

ABSTRACT

EVOLVING INTELLIGENT EMBODIED AGENTS WITHIN A

PHYSICALLY ACCURATE ENVIRONMENT

By

Gene D. Ruebsamen

December 2002

 This thesis explores the application of evolutionary reinforcement learning

techniques for evolving behaviorisms in embodied agents existing within a realistic

virtual environment that are subject of the constraints as defined by the Newtonian model

of physics. Evolutionary reinforcement learning uses evolutionary computation

techniques, which are based to some degree, on the evolution of biological life in the

natural world. These techniques are generally stochastic in nature and involve random

decisions that guide the optimization process via processes of selection, mutation and

reproduction. A common problem of using evolutionary computation techniques to

evolve intelligent behaviors in embodied agents is the simplicity of the environment and

overall system often precludes any life-like behaviors from emerging. Furthermore, the

commonly used supervised learning techniques are extremely difficult to apply to

embodied agents that employ a complex control system. This thesis proposes a

methodology, based on neuroevolution, that effectively addresses this issue of

environmental complexity and learning; thus, allowing for the emergency of like-like and

efficient behaviors.

EVOLVING INTELLIGENT EMBODIED AGENTS WITHIN A

PHYSICALLY ACCURATE ENVIRONMENT

A THESIS

Presented to the Department of

Computer Engineering and Computer Science

Calfiornia State University, Long Beach

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By Gene D. Ruebsamen

BS, 1997, California State University, Pomona

December 2002

Copyright 2002

Gene D. Ruebsamen

ALL RIGHTS RESERVED

 iii

TABLE OF CONTENTS

 Page
LIST OF TABLES………………………………………………………………... v

LIST OF FIGURES………………………………………………………………. vi

LIST OF ABBREVIATIONS……………………………………………………. vii

CHAPTER

1. INTRODUCTION…………………………………………………………. 1

Overview………………………………………………………………….. 1

 Problem Statement………………………………………………………... 3
 Approaches to This Thesis………………………………………………... 5
 Rationale for This Approach……………………………………………... 6

2. BACKGROUND AND RELATED WORKS……………………………. 8

Motivation and Introduction to the Background…………………………. 8
Related Fields…………………………………………………………….. 8
 Classical Artificial Intelligence……………………………………… 8

 Artificial Life………………………………………………………... 10
 Chaos Theory………………………………………………………... 11
 Cellular Automata…………………………………………………… 13
 The Neo-Darwinian Paradigm………………………………………. 15

Application of Research Areas to this Thesis……………………………. 15
 The Genetic Algorithm……………………………………………… 16
 The Artificial Neural Network………………………………………. 19
 Neuroevolution……………………………………………………… 24
 Environmental Complexity………………………………………….. 26
 Evolutionary Computation and Emergence…………………………. 27
 Parallel Processing and Fault Tolerance…………………………….. 28
 The Embodied Agent………………………………………………... 29

Artificial Life and Virtual Creatures……………………………………... 30

 iv

CHAPTER Page

3. DESIGN APPROACH AND
IMPLEMENTATION SPECIFIC DETAILS…………………….. 33

Virtual Environment and Physics Engine………………………………… 33
Rigid Bodies…………………………………………………………. 37
Hinge Joint…………………………………………………………… 38
Slider Joint…………………………………………………………… 39
Ball and Socket Joint………………………………………………… 40
Contact Joints………………………………………………………… 40
Sensory Input………………………………………………………… 41
Effector Outputs and Angular Dynamics……………………………. 43

ANN Implementation Details…………………………………………….. 46
GA Implementation Details………………………………………………. 50
Embodied Agent Morphology and Details……………………………….. 53

Species #1 Simple Crawler Morphology ……………………………. 56
Species #2 Long Arm Morphology………………………………….. 57
Species #3 Hopper Morphology……………………………………... 58
Species #4 Runner Morphology……………………………………... 59

4. EXPERIMENTS AND RESULTS……………………………………….. 61

General Results from the Evolution of Locomotive Behaviors…………... 61
Results for the Embodied Agent Simple Crawler……………………. 62
Results for the Embodied Agent Long Arms………………………... 64
Results for the Embodied Agent Hopper…………………………….. 66
Results for the Embodied Agent Runner …………………………….. 69

Concluding Remarks……………………………………………………… 70

5. FUTURE DEVELOPMENTS……………………………………………. 74

Embodied Agents…………………………………………………………. 74
Morphologies………………………………………………………… 74
Artificial Neural Network……………………………………………. 76

Environmental Issues……………………………………………………… 77
Fitness Function……………………………………………………… 78
Parallel Implementations…………………………………………….. 78

APPENDIX A………………………………………………………………... 80

REFERENCES………………………………………………………………. 85

 v

LIST OF TABLES

TABLE Page

1. RNN Representation of Sensory Data……………………………………. 43

2. RNN Representation of Effector Data……………………………………. 43

3. RNN Implementation Details…………………………………………….. 46

4. Genetic Algorithm Parameters…………………………………………… 51

5. Embodied Agent Morpholgies…………………………………………… 55

6. Summary of Fitness Results……………………………………………… 71

 vi

LIST OF FIGURES

FIGURE Page

1. Lorentz strange attractor………………………………………………….. 12

2. Conway’s game of life……………………………………………………. 14

3. The crossover operation…………………………………………………... 17

4. Biological neural network……………………………………………….... 19

5. Simple fully connected feed forward neural network…………………….. 21

6. A simple recurrent neural network (RNN)……………………………….. 23

7. Evolving a population of embodied agents………………………………. 28

8. An embodied agent……………………………………………………….. 30

9. Craig Reynolds boids simulation (Reynolds, 1987)……………………… 31

10. System flow diagram……………………………………………………... 35

11. Initial starting conditions for each generation……………………………. 37

12. Representation of rigid bodies……………………………………………. 38

13. Hinge joint………………………………………………………………... 39

14. Slider joint………………………………………………………………... 40

15. Ball and socket joint……………………………………………………… 40

16. Contact Joint…………………………………………………………….... 41

17. Sensor arrangement………………………………………………………. 42

18. Effector model for hinge and socket joints………………………………. 44

 vii

FIGURE Page

19. The structure of a generalized recurrent neural network………………… 47

20. Hidden unit outputs are fed back into the input…………………………. 48

21. Plot of the bipolar sigmoid function……………………………………... 49

22. Embodied agent RNN control system…………………………………… 50

23. Chromosome format…………………………………………………….. 52

24. Embodied agent flowchart………………………………………………. 54

25. Embodied agent species #1 (simple crawler)…………………………… 56

26. Embodied agent species #2 (long arms)……………………………….... 57

27. Embodied agent species #3 (hopper)……………………………………. 58

28. Embodied agent species #4 (runner)…………………………………….. 59

29. Fitness graph of species #1 (simple crawler)……………………………. 63

30. Fitness graph of species #2 (long arms)…………………………………. 64

31. Fitness graph of species #3 (hopper)…………………………………….. 68

32. Fitness graph of species #4 (runner)……………………………………... 69

33. Set of evolved move sequences for the crawler morphology……………. 81

34. Set of evolved move sequences for the long arm morphology…………... 82

35. Set of evolved move sequences for the hopper morphology…………….. 83

36. Set of evolved move sequences for the runner morphology……………... 84

 viii

LIST OF ABBREVIATIONS

AI Artificial Intelligence

A-Life Artificial Life

ANN Artificial Neural Network

CA Cellular Automata

EA Evolutionary Algorithm

EC Evolutionary Computation

GA Genetic Algorithm

NE Neuroevolution

RNN Recurrent Neural Network

 1

CHAPTER 1

INTRODUCTION

Overview

 This thesis proposes a methodology for evolving intelligent behaviors of

embodied agents within a physically realistic environment as a significant step toward

devising evolutionary techniques for the emergence of complex intelligent behaviors that

utilize techniques inspired by biological evolutionary systems. Evolutionary

computational techniques allow the embodied agents to learn to interact with their

environment in such a way as to produce complex emergent behaviors. Evolutionary

computation is an umbrella term often used to describe problem solving systems that

incorporate computational models of biological evolution. Evolutionary computation

consists of a variety of evolutionary algorithms such as genetic algorithms, classifier

systems, evolutionary strategies and genetic programming. All of these algorithms share

the common theme of simulating biological evolution of individual structures via the

modeling of selection, mutation and reproduction. Although simplistic from a biologist's

viewpoint, these algorithms are sufficiently complex to provide robust and powerful

adaptive search mechanisms (Spears et al., 1993).

 To better understand the evolutionary computation paradigm, some discussion of

biological evolution is warranted. In nature, evolution consists of several different

processes. The generation of biologically diverse organisms that compete with each

 2

other for limited resources in the environment, otherwise known as natural selection, is

the fundamental process that drives biological evolution. Individuals that are better able

to obtain those resources are more likely to survive and propagate their genetic material

to their progeny.

 The genome represents the encoding of genetic information in nature. Sexual

reproduction allows for 2 individuals to produce offspring that contain a combination of

genetic information inherited from both parents. The crossover operator in the genetic

algorithm models what occurs at the molecular level in biological systems and is also

known as recombination. This crossing over of information from the 2 parents, along

with random bit mutation, is part of the driving force being natural evolutionary

processes. Through these processes nature selects for the fittest individuals (ie. survival

of the fittest) in a population to procreate and produce offspring.

 An embodied agent is an autonomous living creature, subjected to the constraints

of its environment. The term "embodied" differentiates these agents from regular

software agents, which are pieces of software that perform tasks in an intelligent way as

defined by their authors. Examples of software agents include web spiders or IRC bots.

Embodied agents in their simulated environment can be subjected to the same physical

forces that govern bodies in our natural environment, thus allowing for a less difficult

physical realization of the embodied agent upon completion of the evolution process.

Every embodied agent has its own Artificial Neural Network (ANN) that acts as the brain

that processes sensory input and generates motor output. The study of embodied

software agents evolving within a virtual environment has been an active research area in

Artificial Intelligence (AI) and Artificial Life (A-Life). Recently, the field of Artificial

 3

Life has produced several such systems that demonstrate evolution; however, applying

the results to physical systems has proven to be difficult, if not impossible due to the

often-simplified nature of the environment the agents are evolved within.

Problem Statement

 This thesis attempts to solve the problem of evolving intelligent behaviors that are

readily transferable to real world machines existing in the natural world. Doing so

requires the use of an accurately simulated environment utilizing evolutionary

computational paradigms. Due to the evolutionary nature of such systems, the solutions

evolved can often be more robust than the solutions we engineer ourselves; however,

solutions from existing systems are generally not transferable to machines of the natural

world due to the overly simplistic virtual environments employed during development

and training. Currently, much effort is being devoted to designing control systems for a

whole slew of electro mechanical devices; these control systems require the ability to

effectively process the sensor inputs and generate motor outputs that allow the device to

properly and intelligently interact with its environment. The more complex the device,

the more effort is needed in designing the control system for even such basic tasks as

locomotion. Much of this effort can be alleviated if a framework existed where such a

device could be accurately modeled and its control systems simultaneously evolved. The

significance of this thesis is to provide a framework for such a system capable of

modeling a variety of physical devices and/or biologically plausible agents and

simultaneously employing the techniques of evolutionary computation to evolve

intelligent control solutions. The accurate modeling of our natural environment is an

often-neglected area of A-Life research; however, we demonstrate that devoting the

 4

computational resources to an accurate environmental model and simultaneously utilizing

complex biologically inspired algorithms can have a positive influence on the

effectiveness of the emergent behaviors demonstrated by the embodied agents.

 Another important problem of A-Life research addressed in this thesis is the

difficulty of training the embodied agents. Artificial Neural Networks (ANNs) are

models of biological Neural Networks; however, most algorithms for training an ANN

employ supervised learning algorithms and require known solutions to the problem be

presented to the ANN during the training stage. The sheer complexity of the embodied

agents, with their complex control systems, make it impossible to provide the ANN with

the accurate training data to allow for supervising learning methods to be employed.

 This thesis will present a general methodology for evolving optimal or near

optimal solutions to complex control problems that would otherwise require enormous

effort if approached using conventional methodologies. The difficulties and pitfalls of

traditional methods can often be avoided in their entirety by the novel use of

Neuroevolution (NE) techniques to train an embodied agent without requiring the use of

a supervised learning algorithm or an external agent directing the process.

 Due to the complexity of modeling real world physics, as well as the enormous

overhead required for the complex evolutionary algorithms, earlier simulations required

the vast computational resources of supercomputers; however, today with the widespread

availability of powerful commodity computing hardware, the evolution of intelligent

behaviors of embodied agents within a physically accurate environment has become

computationally feasible.

 5

Approaches of This Thesis

 This thesis approaches the problem by addressing two separate issues: (1)

environmental complexity and (2) learning algorithms. It is important to provide

sufficient environmental complexity and accuracy in modeling the natural environment if

we ever wish to have a physical manifestation of the embodied agent. The virtual

environment employs the Newtonian model of physics as it applies to the natural world.

Bodies constrained within the virtual environment behave as they would in the natural

world, with forces such as inertia and friction acting upon them. The embodied agents

that live within this virtual environment are not able to violate any of the constraints of

the environment. The evolutionary algorithms employed in the evolution of the

embodied agents brain allow them to learn via a reinforcement style of trial and error

known as neuroevolution (NE). Furthermore, the embodied agents operate individually

by collecting information from a variety of sense organs, further effectuate changes in the

environment by exerting forces through muscles and pass on their knowledge from

generation to generation. The embodied agent is endowed with a fully connected ANN

with feedback (recurrent) connections; a genetic algorithm is employed to search for an

optimal weight structure for the ANN that will tend to achieve a higher fitness score. The

learning process for the individual embodied agent is a gradual process of adaptation and

mutation that occur when a generation of embodied agents mate and produce offspring.

Highly fit individuals have a greater probability of mating than that of less fit individuals.

 An initial population of embodied agents are set lose in the environment without

any instructions or external stimulus. Since we initially wish to elicit locomotive

behavior, each individual is evaluated and assigned a fitness score based upon its distance

 6

traveled during its brief life. Individual embodied agents whom are able to traverse a

long distance quickly are given a higher fitness than slower individuals or individuals

who are unable to maintain the correct course. In this fashion, natural selection tends to

favor individuals that are able to learn how to move quickly and efficiently. The

individuals with intelligent locomotive behaviors tend to mate with each other and as a

result may generate even faster and more efficient locomotive behaviors.

Rationale for This Approach

 Competition alone is not enough to allow for complex locomotive behaviors to

emerge. By introducing a sufficiently complex and realistic environment, the individual

embodied agents can evolve infinitely complex behaviors. Furthermore, by allowing a

population of agents to compete with each other in nature's game of survival of the fittest,

enormous pressures are placed upon each individual to evolve effective locomotive

behaviorisms or die. The individual embodied agents start with no knowledge of their

environment; however, with each subsequent generation, knowledge of how to survive

within the environment is passed to the offspring. In this way, knowledge is preserved

and passed on to each subsequent generation. Though an embodied agent learns

individually; collectively, the gene pool contains the body of knowledge of the

population as a whole, thus through reproduction an effective agent can share its

knowledge with other individuals in subsequent generations.

 The use of evolutionary algorithms to optimize the structure of the ANN allows

for a rapid convergence on an optimal solution for a given problem. The evolutionary

algorithms approach employs stochastic processes to generate results that significantly

outperform results that would otherwise be obtained through a random search or

 7

conventional optimization techniques. Though the evolutionary algorithms approach

makes use of random processes such as mutation, it cannot be stressed enough that the

results obtained are distinctly nonrandom. The benefits of the evolutionary approach are

twofold: the embodied agents do not need to contain any prior knowledge of their

environment and it is sufficient to define the problem and let the embodied agents come

up with the optimal solutions.

 8

CHAPTER 2

BACKGROUND AND RELATED WORKS

Motivation and Introduction to the Background

 This chapter provides background material for the reader and presents similarly

related works by other researchers.

Related Fields

 Several branches of research concern themselves with studying intelligent

behavior, complexity, evolutionary computation or emergence of complex behaviors

from simple interactions. Stephen Wolfram provides an excellent summary (Wolfram,

2002) of no less than 17 distinct disciplines relating to those fields of study. Many of

these areas have influenced, in some way, the directions taken in this thesis.

Classical Artificial Intelligence

 Although most scientific disciplines, such as mathematics, physics, chemistry and

biology, are well defined, the field of artificial intelligence (AI) remains enigmatic

(Fogel, 2000, p. 1). Many of the proposed definitions of AI rely upon comparisons to

human like behavior. We choose to define Artificial Intelligence as the branch of science

that deals with designing machines that can find solutions to complex problems in a more

human-like fashion. Whatever the definition, most researchers agree that classical

methods of AI have taken a top down approach. The top down approach treats cognition

as a high-level phenomenon that is completely independent of the low level details of the

 9

implementing mechanism. The classical, or top-down approach to AI is deductive (i.e.,

given a set of basic rules, the system is to deduce what combination will produce the

desired result) and deals with descriptions of relevant features of the task.

 In 1950, Alan Turing pondered the question "Can machines think?" Rather than

attempt to answer the question, he devised a test that still bears his name. The Turing test

begins with 3 people, a man (A), a woman (B) and an interrogator. The interrogator, in a

room separate from the man and woman allowing for no sensory input, may ask

questions of both the man and woman. The interrogator's objective is to discern which

person is the man and which is the woman. Participant (A) may be deceitful; however,

the object for participant (B) is to help the interrogator. Turing then pondered what

would happen if a machine were to take the place of participant (A) or (B). Should the

machine perform as well as a human participant, it was declared to have passed the test.

The original question of whether the machine should then be judged as being capable of

thinking was left unanswered by Turing.

 The popularity and acceptance of the Turing test focused early efforts on

simulating aspects of human behavior. In 2000, Fogel wrote, "At the time (1950), it was

beyond any reasonable consideration that a computer should pass the Turing Test. Rather

than focus on imitating human behavior in conversation, attention was turned to more

limited domains of interest." Thus, classical AI focused its energies on problems of

limited domain such as game playing strategies and expert systems.

 The initial focus of AI was to eventually create general problem solving

programs; however, after several unsuccessful preliminary attempts, the focus of AI

narrowed considerably through the 1960s to the early 1980s. Specific search algorithms

 10

were applied to very narrowly defined problems that were typical of human experts in

their field of expertise. It was discovered that knowledge in a particular field could be

represented in a form that allowed a computer to perform reasoning activities upon it.

Researchers again employed the top-down approach of the classical AI paradigm in the

development of the computer "expert system." It was believed that such a system would

offer many advantages over a human expert, such as permanence and convenience.

 In the late 1980s, the branches of AI split into several directions, and are often

difficult to classify; however, 2 recent branches of AI that rely heavily upon a bottom up

approach are: Machine Learning and Search and Optimization. The Search and

Optimization branch deals with planning, constraint satisfaction and function

optimization. The Machine Learning branch concerns itself with Neural Networks,

Inductive Programming, Data Mining, Bayesian Networks and Decision Tree Learning.

The evolution of embodied agents incorporates methods from both the Machine Learning

and Search and Optimization branches of AI. The bottom up approach takes its cues

from biological evolutionary systems.

Artificial Life

 Artificial life (A-Life) is the scientific field of study that attempts to model living

biological systems through complex algorithms. A-Life and Evolutionary Computation

both make use of evolution and the bottom up approach; however, A-Life emphasizes the

development of intelligence through emergent behavior of complex adaptive systems,

whereas Evolutionary Computation focuses on providing a framework for optimization

processes in general.

 11

 The primary objective of A-Life is to produce intelligence or life through local

interactions among a large population of virtual agents, as well as the study of the

evolutionary process of life in general. The process of producing intelligence or global

behavior from local interactions is called an emergent property. Life can be classified as

something capable of reproducing itself and adapting to its environment. Life is also

capable of independent actions that are not decided by an external agent. These are 2

properties that are shared in common with A-Life.

 The environment used in A-Life experiments does not have to mirror the natural

world. Rather, most of the A-Life simulations make use of a simplified environment or

an environment with entirely different rules than that of our natural world. These

simplified environments allow the researcher to concentrate on studying the emergent

properties of life rather than having to deal with the complexities of the environment.

Chaos Theory

 The field of chaos theory concerns itself with the study of unstable a-periodic

behavior in deterministic nonlinear dynamical systems. The basic principle that describes

chaos theory is the "Butterfly Effect." The Butterfly Effect states that small variations in

initial conditions result in huge and dynamic transformations in the resulting events. The

term butterfly effect arose from the claim that a butterfly flapping its wings can, given

enough time, affect the direction of a hurricane on the other side of the planet. The main

significance of Chaos Theory is the implication that any small uncertainties in the initial

conditions of a system will eventually lead to behavior that is impossible to accurately

predict.

 12

FIGURE 1. Lorentz strange attractor

The most identifiable symbol, forever linked to the Butterfly Effect, is the famed

Lorentz Strange Attractor (see figure 1). With the aim to describe convection in

meteorological systems, Lorentz (1963) came to identify 3 nonlinear equations that show

chaotic behavior can arise from simple deterministic models. The strange attractor is a

plot of these 3 equations. Starting from any initial condition, the calculations will

approach the path displayed in figure 1; however, the actual path followed by the

equations is highly dependent upon the initial conditions. Lorentz apparently discovered

the chaotic nature of these equations after quickly recalculating his simulations with input

data that had the fractional parts truncated to save data entry time on his computer

system. He successfully demonstrated sensitive dependence upon initial conditions.

Chaos theory states that many apparently random events can be represented using

simple computations, when iterated, that produce complex results. The values from each

stage of the iterated computations are generally fedback into the next stage. Different

algorithms produce different amounts of complexity when iterated. Lorentz was the first

to show this type of chaotic behavior (Lorentz, 1963).

 13

The results of a chaotic system, while deterministic and predictable in theory, are in

reality random and unpredictable due to the sheer complexity of dependencies. Results

from a chaotic system can appear to be far from rational.

Chaotic Systems can only be predicted if all the inputs to the system and all the

rules of the system are known. Even chaotic systems with known rules will likely remain

unpredictable due to the butterfly effect. Slight errors in measuring the inputs of these

systems will cause large deviations in the predicted results vs. the observed results over

time. Many natural processes, as well as many man made processes, are chaotic systems.

Examples include a dripping water faucet, the financial markets and global weather

patterns.

Cellular Automata

 Cellular automata (CA) are discrete dynamical systems whose behaviors are

completely specified in terms of a local relation. A uniform grid usually represents

space, with each cell location containing some bits of data. Time in a CA universe

advances in discrete steps and the laws of such a universe is generally expressible in a

small lookup table of rules.

 A cellular automata is basically an array of cells that interact with their neighbors.

This array can take on any number of dimensions. One-dimensional CAs are popular

with researchers due to their simple to analyze rules. Each cell has its own state and

receives input from connected cells, by using its set of rules it can then determine what its

reaction will be. The reaction a cell takes will be a change of state and can also trigger a

cell to send messages to other cells in more complex CAs.

 14

FIGURE 2. Conway's game of life

A key feature of CAs is their ability to allow complexity to emerge by interaction

of simple individuals following simple rules. Similar to the butterfly effect of chaotic

systems, the dynamical systems defined as CAs often show huge resultant effects due to

small changes in the starting conditions. The best-known Cellular Automaton is John

Conway's Game of Life and is played on a 2-dimensional grid as demonstrated in figure

2.

Chris Langton (1986) proposed the lambda parameter for the standard CA as the

percentage of nonzero transitions in the CAs state transition table and established its

significance as a dynamical measure. The lambda parameter, when increased from 0 to

1, shifts the behavior of the CA from simple monotonic (Class I as defined by Wolfram)

to periodic (Class II), then to chaotic (Class III), while passing briefly through an

intermediate stage of long transients and complex structures (Class IV). Langton

theorized that living systems and other self-organizing systems display qualitative

features associated with this brief interlude between periodicity and full chaos (Langton,

1986, pp. 120-149).

 15

The Neo-Darwinian Paradigm

 The Darwinian paradigm uses the theory of Natural Selection or "survival of the

fittest" as the mechanism for evolution and creating diversity among species. Variations

in an individuals genome that provide advantages in reproductive success will be favored,

while other variations that decrease reproductive success will tend to be eliminated. The

Neo-Darwinist theories of evolution form the underpinnings of the classical genetic

algorithm.

Application of Research Areas to This Thesis

 This thesis makes use of many of the research areas described above.

Neuroevolution (NE), the primary means of training the embodied agents, has benefited

from research into evolution, chaotic systems, and cellular automata. The genetic

algorithm as employed by NE models biological evolution and the artificial neural

network models biological neural networks, both borrow heavily from the Neo-Darwinist

theories of evolution.

 A pivotal requirement for the embodied agents is the ability to learn from their

mistakes, and beget offspring with the tendency to have a higher fitness than their

parents. NE employs reinforcement learning techniques that utilize Genetic Algorithms,

Artificial Neural Networks and Evolutionary Computation. The classical AI approach

cannot be utilized due to the rigid rules and lack of learning and evolutionary algorithms.

A classical approach would likely not produce the results we are looking to achieve;

therefore, we chose to implement techniques from the newer bottom-up approach to AI.

 Adopting the use of Evolutionary Algorithms and utilizing the bottom-up

approach rather than the top-down approach of traditional AI place great pressure upon

 16

the population of embodied agents to learn to improve and adapt their behaviors

otherwise face certain extinction. This use of evolution and survival of the fittest allows

the fittest embodied agents to evolve efficient locomotive behaviors along with their

corresponding control systems without the need for an external agent to direct the

learning process.

The Genetic Algorithm

 Genetic algorithms (GAs) are evolution inspired algorithms used for optimization

and machine learning based loosely upon biological evolution. Invented by John Holland

in the 1960's, his original goal was the study of adaptation as it occurs in nature and to

simulate such mechanisms in a computer system. As in the case of AI, there exists no

clear definition of a GA. However, it can be said that most methods called "GAs" have at

least the following elements in common: populations of chromosomes, selection

according to fitness, crossover to produce new offspring and random mutation of new

offspring (Mitchell, 1999, p. 8). Unlike many other optimization algorithms, the GA is

probabilistic rather than deterministic. The genetic algorithm works by creating a large

population of individuals, each of which is represented by a chromosome(s) that are

analogous to the chromosomes present in human DNA. The individuals in the population

then go through a simulated process of natural evolution involving fitness calculation,

mating, reproduction and generation of offspring. A simple GA can be broken down into

6 steps: 1) Define and capture the problem in an objective function that will allow the

calculation of fitness of any potential solution, 2) then create an initial population of

random individuals whose genes represent a solution to the problem defined above, 3)

then decode the chromosome and compute the fitness for every individual based upon the

 17

predetermined fitness function, 4) assign each chromosome a probability of reproduction

based upon its fitness score, 5) according to the probabilities of reproduction, create a

new population by performing the crossover operation to each pair of mating individuals

to produce a set of offspring which are then subject to a small probability of bit

mutations, 6) if a suitable solution has been found, halt the process, otherwise proceed at

step 3 with the new set of chromosomes generated in this step. One iteration of the above

loop is called a generation. The first generation of this process operates on randomly

generated individuals; however, subsequent generations of this process operate to

improve the population by employing the genetic operations in concert with the measure

of fitness. The GA effectively searches the fitness landscape for a peak that represents

the highest fitness score obtainable. Exploiting the parallel nature of the search, as well

as the directed nature of the search itself, the GA is generally able to converge upon an

optimal solution. The repetition of the above steps for several generations is the process

that drives for the selection of individuals of successively higher fitness with each

passing generation (i.e., evolution). By allowing the simulation to run for a sufficient

number of generations, highly optimized solutions will tend to evolve.

FIGURE 3. The crossover operation

 A simple genetic algorithm that yields good results in many practical problems is

composed of three operators: (1) reproduction, (2) crossover and (3) mutation (Goldberg,

 18

p. 10). Reproduction is the process in which individuals mate according to their fitness

values. Individuals with a higher fitness have a higher chance of reproducing and

producing offspring; hence, promoting their good genes. Simple reproduction generally

uses a method called roulette wheel selection where the probability of an individual

mating is proportional to its fitness. Simple single-point crossover takes a pair of mating

individuals and combines their genes. The point at which the 2 chromosomes cross is

generally randomly determined and is known as the crossover point and is demonstrated

in figure 3. The simple mutation operator randomly modifies a gene to produce a new

value mainly for the purposes of exploration of the fitness landscape.

 The fundamental theory behind the genetic algorithm is coined: the Schema

Theorem. The theorem implies that GAs work by discovering and manipulating short,

low-order "building blocks" of solutions of above average fitness in an implicitly parallel

fashion. In other words, good solutions tend to be made up of good building blocks.

 The simple GA is prone to premature convergence due to multiple peaks in the

fitness landscape. At the start of a GA run it is common to have a few extraordinary

individuals in a population of mediocre colleagues. If left to the normal selection rule,

the extraordinary individuals would take over a significant proportion of the finite

population in a single generation, and this is undesirable, a leading cause of premature

convergence (Goldberg, 1989, p. 77). By scaling the fitness of the individuals, we can

help prevent premature convergence by giving less weight to large fitness variations early

on in a run, and giving greater weight to small fitness variations later in a run.

 Because the GA is an optimization algorithm, it can be used to optimize the

structure of other Evolutionary Algorithms, such as Artificial Neural Networks. A

 19

slightly modified genetic algorithm that implements fitness scaling is used in this

experiment, with the purpose of optimizing the neural connection weights of the

embodied agent's ANN to produce intelligent locomotive behaviors. The use of a genetic

algorithm to train an ANN is a novel and relatively new approach to ANN learning

known as neuroevolution.

FIGURE 4. Biological neural network

The Artificial Neural Network

 Artificial Neural Networks (ANNs) are information-processing systems that have

certain performance characteristics in common with biological neural networks.

Biological neural networks have neurons that emit electrical signals along an axon to the

dendrites of other neurons. Figure 4 demonstrates how a biological neural network

transmits data. Artificial neural networks have been developed as generalizations of

mathematical models of human cognition or neural biology (Fausett, 1994, p. 3). In other

words, Artificial Neural Networks are a different paradigm for computing that exploit the

parallel architecture of biological brains. According to Fausett, a neural network is

characterized by 3 things: (1) the architecture or structure of the ANN, (2) the learning

method used to determine the weights of the network, and (3) the activation function of

 20

the neurons. A typical artificial neural network consists of a collection of "neurons" or

simple processing elements that attempt to mimic on a much smaller scale, the massively

parallel structures and connections of biological neural networks (i.e., biological brains).

Every neuron in an ANN contains an internal state that is defined by an activation

function. Activation functions generally employ a nonlinear squashing function such as

the hyperbolic tangent, or the sigmoid function to the weighted sum of the input signals

on a neuron. The architecture of a simple feed-forward ANN consists of a collection of

neurons that are arranged into distinct layers that forward propagate their output signals

into the inputs of the next layer of neurons. Generally, 3 layers are used: an input layer,

a hidden layer, and an output layer. A set of inputs are fed into the first layer of the

network with each neuron taking the weighted sum of its inputs and applying the

activation function before propagating its output to the next layer of neurons and

eventually reaching the output of the neural network. Multilayer nets as described above

can be trained to perform nonlinear mappings from an n-dimensional space of input

vectors (n-tuples) to an m-dimensional output space (Faucett, 1994, p. 16). Another

important characteristic of ANNs that are shared with biological neural networks is their

fault tolerance characteristics. In biological systems, damage to the neural system itself

can often be tolerated with little ill effect and other neurons can often be trained to take

over the functions of the damaged cells. Similarly, artificial neural networks can be

designed to be insensitive to small amounts of damage to the network, and retraining can

occur with larger amounts of damage. The typical feed forward ANN configuration is

demonstrated in figure 5.

 21

FIGURE 5. Simple fully connected feed forward neural network

 The architecture of the ANN determines its method of learning or training. An

ANN can be trained using either a supervised approach or an unsupervised approach. In

the most typical neural network setting, a simple feed forward ANN architecture, learning

is accomplished via supervised training using one of several different learning

algorithms, the most common of which is the back propagation (of errors) algorithm.

Back propagation is the basis for training a supervised ANN and is used to produce a

mapping of static (time independent) input to a static output. The back propagation

algorithm works by its application of the chain rule for ordered partial derivatives to

calculate the sensitivity that a cost function has with respect to the internal states and

weights of a network. In other words, back propagation is simply a gradient descent

method to minimize the total squared error of the output computed by the net. The

prerequisites for training an ANN using the back propagation algorithm include sample-

training data consisting of inputs to the ANN and the corresponding expected outputs. A

back propagation net (a multilayer, feed forward ANN trained using the back propagation

algorithm) is generally used for solving static classification problems such as optical

 22

character recognition. A significant disadvantage of the back propagation training

method is the requirement of training data. For several applications, especially those

involving control systems, it is often impossible to generate a sufficient quantity of

training data.

 Time is clearly important in cognition and is inextricably bound up with many

behaviors (such as language), which express themselves as temporal sequences. Indeed,

it is difficult to know how one might deal with such basic problems as goal-directed

behavior, planning, or causation without some way of representing time (Elman, 1990).

Another type of ANN that makes use of time and is both biologically more plausible and

computationally more powerful is the Recurrent Artificial Neural Network (RNN).

RNNs are artificial neural networks with adaptive feedback connections. Each time a

pattern is presented on the inputs of an RNN, the respective neurons compute their

activation functions just as in a feed forward network; however, the net inputs to each

neuron now contain a term that reflects the state of the network before the input pattern

was seen. The obvious advantage an RNN offers over the traditional feed forward

network is "memory." The use of feedback connections allow the RNN to have a

"memory" of past events; thus, pattern presentation to the RNN will now take into

consideration what moment in time the pattern occurs. Biological neural networks

process information in a similar fashion to the RNN. Figure 6 demonstrates the feedback

connections and context units of the RNN.

 23

FIGURE 6. A simple recurrent neural network (RNN)

 Drawbacks of the RNN include: they are computationally more intensive than

feed forward ANNs and the standard method of learning via back propagation of error

does not work with RNNs. New methods of training RNNs have been devised; one

approach has become known as the Back Propagation Through Time (BPTT) method.

BPTT can be seen as an approximation to the ideal of computing a gradient that takes

into consideration all the inputs seen so far by the network. The disadvantages of BPTT

are similar to the back propagation training method and include the requirement of large

amounts of storage, computation, and training examples consisting of known solutions.

 The embodied agent of this thesis is endowed with an Elman (1990) Recurrent

Neural Network for its biological plausibility and powerful memory capabilities. The

BPTT algorithm is unusable in this application because of the requirement of training

data. Furthermore, biological neural networks do not make use of back propagation for

learning. Because of our desire to use evolutionary algorithms to evolve intelligent

 24

locomotive behaviors that give each embodied agent the highest likelihood of survival,

we chose to utilize NE as a relatively new reinforcement learning approach for RNNs that

make use of GAs.

Neuroevolution

 In difficult real-world learning tasks such as controlling robots, pursuit & evasion

tasks, or game playing, it is impossible to specify correct actions for each situation. In a

complex control system, such as those used by the embodied agents in this thesis,

specifying the correct outputs for each possible input combination and state is practically

impossible. In these situations, optimal behavior must be learned by the exploration of

different actions, the reinforcement of good decisions based upon some feedback from

the system itself and the exploitation of learned knowledge of the environment. NE

techniques evolve neural networks using the optimization process of genetic algorithms,

and allow for the evolution of robust solutions to difficult real-world learning tasks

without the need to supply additional information or for an external agent to direct the

process. NE is often more robust and less susceptible to noisy input than traditional back

propagation training methods due to NEs evolutionary nature.

 Traditionally, NE begins with a fixed topology for the evolving neural networks.

A fully connected network topology with a hidden layer of neurons is typically used.

Once the topology is chosen, evolution searches the connection weights of this network

by allowing the reproduction of several networks and evaluating their performance. A

Genetic Algorithm controls the evolution and reproduction of the neural networks.

 25

The exploration of the weight space is done via the crossover of network weight vectors

and through mutation of single networks' weights (Stanley and Mikkulainen, 2002).

Only allowing the best performing networks to reproduce reinforces robust solutions.

 In this thesis, NE makes use of the powerful optimization capabilities of the GA

by encoding the weights of the RNN into a chromosomal format compatible with the GA.

The GA is run for several generations until a successful solution (RNN weight structure)

is evolved. Though this method is very computationally intensive, it holds a distinct

advantage over the traditional learning methods of ANNs: unsupervised reinforcement

learning. In other words, NE does not require the use of training data or an external agent

to direct the learning process and will eventually produce an optimal (or near optimal)

solution after several generations with the only requirement being a well-defined fitness

function. Furthermore, NE is more biologically plausible than the BPTT method of

learning. The user may sacrifice some control, especially with a procedurally defined

fitness function; however, the potential gain in automating the learning process and the

creation of a complex control system compensates for the loss (Sims, 1994).

 Standard NE is highly effective in reinforcement learning tasks such as robotic

control; however, a significant advantage can be gained by evolving neural network

topologies along with the weights. Algorithms that expand upon the basic principles of

NE include SANE (Moriarty, 1997) which evolves the topology of the network, as well

as the weights, and NEAT (Stanley and Mikkulainen, 2002) which starts with a minimal

network and "complexifies" the network as necessary to evolve an optimal and efficient

solution to the problem. Both the above methods increase the efficiency of the NE

system, and make it possible to evolve ever increasingly complex solutions over time.

 26

The NEAT algorithm can further make use of competitive co-evolution. In competitive

co-evolution, the goal is to establish an "arms race" that will lead to increasingly

sophisticated strategies (Stanley and Mikkulainen).

Environmental Complexity

Even disregarding issues of biological plausibility, the coupling of embodied

agents with the environment brings with it a major methodological problem: results

reporting behaviors of different organisms in different environments are incommensurate.

It is, therefore, difficult to assess whether an apparently superior behavior is the

consequence of more sophisticated adaptive techniques, or is due to the relative

complexity of the environments. There exists a great desire to be able to define artificial

environments of controlled complexity, within which a wide range of A-Life techniques

may be directly compared (Menczer, 1998).

Godfrey-Smith attempts to characterize the generic conditions on complexity of

environments by the number of states they present to their organisms, the frequency of

their change, and their overall heterogeneity (Godfrey-Smith, 1996). Several other

researchers propose food density as another generic condition of environmental

complexity; however, we define the only generic condition of environmental complexity

to be the accurate modeling of natural physics. In the natural world, this is one of the few

conditions we cannot change and this condition alone is sufficient to allow the emergence

of complex behaviors. Furthermore, as stated earlier, our long-term goal is the transfer of

evolved intelligent behaviors into physical manifestations of the embodied agents within

the natural world.

 27

The accurate modeling of the physics of the natural world allow for commensurate

comparisons to be made between the physical and virtual manifestations of the embodied

agents.

Evolutionary Computation and Emergence

 Evolutionary computation (E.C.) is an umbrella term that encompasses several

computational techniques that are to some degree based upon the evolution of biological

life in the natural world. The term is relatively new and represents an effort to bring

together researchers who have been working in closely related fields, yet following

different paradigms. EC involves research into genetic algorithms, evolutionary

strategies, evolutionary programming, and artificial life. EC struggles with the same

ideas as Artificial Life: determining how to represent "solutions" to an environment,

determining which "solutions" are able to reproduce, determining how the reproduction

mechanisms work and determining which life forms should die. EC also concerns itself

with the global behaviors that emerge from simple and local interactions.

 The relevance of EC to this thesis is demonstrated in the emergent properties of

many of the computational techniques that we utilize. This thesis does not directly make

use of the emergent properties of EC; however, by employing a Genetic Algorithm, we

can take advantage of past behaviors and make use of a "global knowledge" when the

population reproduce and indirectly take advantage of the emergent properties of EC.

One possibility is to allow the population of individuals themselves to interact with one

another and develop a group mentality or behavior. With the entire population

cooperatively (or competitively) working on a solution to a problem, novel global

solutions may emerge.

 28

FIGURE 7. Evolving a population of embodied agents

Parallel Processing and Fault Tolerance

 Parallel processing is the use of multiple processing elements to execute different

parts of the same program simultaneously. The main goal of parallel processing is to

reduce the overall time required to complete a computational task. In theory, a thousand

simple processing elements working in unison toward the same goal would be equivalent

to one processing element that is a thousand times more powerful than the single simple

processing element. Biological neural networks make use of parallelism by their

implementation of millions or billions of simple neurons (processing elements) and their

vast network of connections working together to comprise an extreme parallel processing

system. Both GAs and ANNs are inherently parallel algorithms; however, their

implementation is often on serial computational devices such as a uniprocessor computer,

thus the speed advantages of the implicitly parallel structure of these algorithms are often

lost on such devices. The genetic algorithm is inherently parallel with each individual

population member having few if any dependencies upon the other individuals. There is

no question that a biological neural network, with their densely interconnected parallel

structure is a parallel information-processing device. The artificial neural network, an

 29

information-processing paradigm inspired by the biological neural network is also an

inherently parallel structure. Though both the GA and ANN are based on parallel

structures or algorithms, they may not be ideally suited for implementation on today's

parallel machines. Communication delays and synchronization issues within their

structures can hinder the implementation of these algorithms onto a parallel machine.

 Much research has been done on the implementation of both GAs and ANNs on

parallel computers. Issues such as synchronization, global communication, and the

amount of implicit parallelism of the fitness function all need to be considered when

implementing a genetic algorithm or a neural network on a parallel machine.

The Embodied Agent

 An agent, in the context of computer science, often refers to a piece of software

that can perform its tasks in an intelligent manner. An agent that exists in a virtual world,

like their biological counterparts, requires an interface (or body) to interface with the

environment. Agents that exist within a virtual world are often known as animats or

virtual creatures. An embodied agent is an autonomous living creature, subject to the

constraints of its environment. The consequence of giving a software agent a body to

control subjects the agent to the forces of its programmed environment. The impetus for

creating embodied agents is realism and modularity. A typical embodied agent with 2

appendages composed of several rigid bodied interconnected via multiple hinge joints is

shown in figure 8.

 30

FIGURE 8. An embodied agent

 The embodied agent can model a biological creature with its sensors and outputs

(i.e., muscle output). Vision and movement are the 2 most common attributes an

embodied agent can posses. The embodied agents in this experiment were endowed with

sensors to provide the ANN with input from the environment, and effectors that allow the

ANN to control the movement of the agent.

Artificial Life and Virtual Creatures

 There has been little work in the field of A-Life involving simulations that utilize

a physically accurate environment that models natural world rules of physics. Many

recent studies in artificial life make use of a simplified environment to evaluate the

learning process within the embodied agent; however, there have been a few studies

aimed at accurately recreating a physically plausible environment.

 The most complex and realistic simulation to date was performed by Karl Sims

and presented at Siggraph in 1994. Sims's Virtual Creatures described a novel system for

creating virtual creatures that move and behave in a simulated 3-dimensional physical

world (Sims, 1994). Sims's GA evolved both the creature morphology and control system

 31

simultaneously to perform a variety of tasks ranging from walking to competing with

other virtual creatures for control of a block. The brains of Sims virtual creatures

resembled that of a data flow computer program more than a neural network, and were

able to process sensory information from the environment and produce motor output.

Sims ran his simulations on a Connection Machine supercomputer because of the high

computational complexity of his simulations.

FIGURE 9. Craig Reynolds boids simulation (Reynolds, 1987)

 One of the first 3-dimensional computer simulations of embodied agents was

demonstrated by Craig Reynolds who simulated the aggregate motion of a flock of birds

within a 3-dimensional environment (Reynolds, 1987). The simulation was an elaborate

particle system, with each bird represented by a particle with the aggregate motion of the

simulated flock controlled by a distributed behavioral model. The flocking behaviorisms

demonstrated by the Boids were similar to those of birds in the natural environment.

 The Boids made use of 3 basic rules: (1) Steer to avoid getting close to

neighbors, (2) Steer to keep on the average heading of the flock, (3) Steer to stay near the

average position of the neighbor. The emergent global behavior that arose from the

simple interactions was astonishing at the time. The Boids were able to navigate, as a

flock, across an area of columns.

 32

They were able to flow around the columns, and remained in a group formation by

speeding up or slowing down.

 33

CHAPTER 3

DESIGN APPROACH AND IMPLEMENTATION SPECIFIC DETAILS

 Evolutionary computation methods are borrowed from natural living systems.

Because of our desire to evolve intelligent behaviors for embodied agents in a life-like

environment, we employ several different Evolutionary Algorithms. As stated earlier, the

goal of this thesis is to develop a framework for evolving life like and optimal behaviors

in virtual creatures that can be easily transferred to real world machines. This framework

consists of the evolutionary algorithms employed in evolving the brain of each embodied

agent, the virtual environment the agents "live" within, and the morphology of the agents

themselves. In this chapter we discuss the details of the environment, the agent

morphologies, and the union between the GA and RNN.

Virtual Environment and Physics Engine

 Environmental complexity plays a large role in the successful evolution of

complex biological organisms. In an effort to allow for commensurate comparisons

between physical agents of the natural world and the agents of the virtual environment,

an accurate physics model is employed. The virtual environment utilizes a sophisticated

physics engine to accurately simulate rigid body dynamics, joints, contacts/collisions,

friction, inertia and gravity by simulating natural world physics. Due to the relatively

low velocities expected, and to reduce the computational complexity of the simulation,

the physics engine uses Newton's model rather than Einstein's equations. By employing

 34

an environment that accurately models real world physics, we can ensure that the

embodied agents that exist within the virtual environment are unable to generate any

motions or forces that would otherwise be irreproducible in our natural environment.

The embodied agents that live within this environment are composed of a series

of rigid bodies interconnected via joints. The physics engine acts directly upon the rigid

bodies of the agents; therefore, the agents themselves are subject to the rules of physics

that govern the environment. Each rigid body can be further constrained by the use of a

joint. A joint can connect 2 or more rigid bodies and can be permanent (such as a hinge

or slider joint), or can be temporary and a result of the collision of 2 rigid bodies (such as

a contact joint). When an embodied agent's appendage collides with the ground plane, a

temporary contact joint is created.

Gravity in the virtual world is set at approximately 9.8 m/s2, to provide a close

approximation of real world gravitational forces at sea level. Ground friction is necessary

for locomotion, and is modeled in the temporary contact joint created during a collision.

Friction within the agent's joints is also modeled by the use of a small negative torque

within the joint itself. Other forces such as wind resistance are so minor that we choose

not to simulate them in order to reduce the computational complexity of the system. The

landscape of the virtual environment is completely barren; an infinite horizontal place

with a coefficient of friction similar to that of asphalt acts as the ground upon which the

embodied agents can use their appendages to generate forces.

 35

FIGURE 10. System flow diagram

As stated earlier, the physics engine interacts directly with all the rigid bodies

within the virtual environment; therefore, the embodied agents themselves are subject to

the constraints imposed by the physics engine. The system flow diagram is shown in

figure 10, and represents an overview of how the environment interacts with the

embodied agents to allow for locomotive strategies, such as walking, to develop. The

 36

system flow diagram can be broken down into six distinct steps: (1) Creation of a new

population of embodied agents whose actions are immediately constrained by the physics

engine. (2) Agents perform tasks dictated by the predefined fitness function. In this case,

the agents employ a variety of input sensors to gather environmental data, which are

processed by the RNN to generate effector outputs, which physically move the agent's

joints and limbs, thus generating motion. (3) Calculate the Fitness scores based upon

how well the agents were able to perform their tasks in step 2. Each individual is given a

fitness score proportional to the distance traveled along a predetermined axis and then the

entire population is linearly fitness scaled to reduce large variations in fitness. (4) Select

individuals for reproduction with the chances of being selected being proportional to the

fitness score. This method is also known as roulette wheel selection. (5) Crossover

selected individuals from step 4 by performing the single point crossover operator as

shown in figure 3. The probability of being select for crossover Pc is 80% as defined in

table 2. (6) Mutate selected individuals from step 4 by employing a Gaussian mutation

operator with the probability of mutating any given gene Pm at 0.10%, generate new

population and repeat at step 2. The symbiotic relationship between the RNN and the GA

can be clearly seen in the system flow diagram as the GA works to optimize the RNN.

A population of 80 embodied agents begins each generation at their initial

position of (0,y0) on the horizontal ground plane as shown in figure 11. The population is

given a fixed amount of time to move as far along the x-axis in the negative direction as

possible. After a fixed amount of time, each individual embodied agent is evaluated and

assigned a fitness value corresponding to how well it performed the task.

 37

Agents that travel longer distances are assigned proportionately higher fitness scores than

agents that are unsuccessful at traveling.

FIGURE 11. Initial starting conditions for each generation

Rigid Bodies

A rigid body has various properties from the point of view of the simulation.

Four properties of rigid bodies that change with time are: (1) Position vector (x,y,z) of

the body's point of reference corresponding to a bodies center of mass, (2) linear velocity

vector of the point of reference (vx,vy,vz), (3) orientation of a body, represented by a

quaternion (qs,qx,qy,qz) or a 3x3 rotation matrix and (4) angular velocity vector

(wx,wy,wz) that describes how orientation changes with respect to time. Rigid body

properties that remain constant over time include: (1) Mass of the body, (2) position of

the center of mass and (3) inertia matrix describing how the body's mass is distributed

around the center of mass (Smith, 2002). These properties are used internally within the

physics engine to calculate the forces and torques that affect the rigid bodies. The

calculations are described in detail later in this chapter.

 38

FIGURE 12. Representation of rigid bodies

 Conceptually, each body has an x-y-z coordinate frame embedded in it that moves

and rotates with the body, with the origin of this coordinate frame at the body's point of

reference as shown in figure 12. A rigid body can be represented, for collision detection

purposes, by a rectangular box-like structure or a cylinder.

Hinge Joint

 The hinge joint, as shown in figure 13, constrains the motion of the two attached

rigid bodies to rotate about the axis. The hinge joint is the simplest joint with only 2

sensors: (1) current hinge angle and (2) current hinge angle rate. Let h(t) be the current

angle between 2 bodies at time t, then the hinge angle rate r(t) is defined as the time

derivative of the hinge angle:

)()(th
dt

d
tr =

The value returned for the hinge angle will be between –pi and pi. The hinge joint has 2

sensors that can provide the current angle and angular velocity to the embodied agent.

The joint also has 1 effector that accepts the desired velocity as its input.

 39

FIGURE 13. Hinge joint

Slider Joint

 The slider joint, as shown in figure 14, constrains the motion of the attached

bodies to move along the axis. The slider joint is another simple joint that allows for only

1 degree of freedom. The 2 sensors of the slider joint provide the following information:

(1) the slider joint's current position and (2) the rate of position change. Let s(t) be the

current slider position between 2 bodies at time t, then the slider position rate p(t) is

defined as the time derivative of the slider position:

)()(ts
dt

d
tp =

The current position is returned as a number between –1 and 1, with 0 representing the

midpoint between the 2 joint extremes. The sliders 2 sensors provide linear position and

linear velocity information to the RNN of the embodied agent. The slider has 1 effector

that can accept the desired velocity as its input.

 40

FIGURE 14. Slider joint

Ball and Socket Joint

 The ball and socket joint, as shown in figure 15, is the most complex joint

currently used by the embodied agents. The ball and socket joint allows for 3 degrees of

freedom about the 3 axes. The ball and socket joint provides 2 feedback sensors for each

axis. The 2 sensors provide the following data: (1) ball and socket angle for the given

axis and (2) ball and socket angle rate for the given axis.

FIGURE 15. Ball and socket joint

 41

The angle rate for an axis is calculated by taking the derivative with respect to

time of the current angle on the particular axis. Due to the 3 degrees of freedom, the 2

sensors can provide up to 6 pieces of information to the RNN.

Contact Joints

The contact joint prevents body 1 and body 2 from inter-penetrating at the contact

point. It does this by only allowing the bodies to have an "outgoing" velocity in the

direction of the contact normal. Contact joints are typically created and deleted in

response to collision detection. Contact joints simulate friction at the contact by applying

forces in the 2 friction directions that are perpendicular to the normal (Smith, 2002).

FIGURE 16. Contact joint

Sensory Input

 The embodied agents employ a host of sensors to collect data from the

environment and feed the data to the RNN. Table 1 demonstrates the variety of sensors

employed in this simulation as well as the internal RNN representation of the sensory

data. The table also demonstrates the range of values that the sensors are able to detect.

 42

The sensors update their output values at every simulation time-step and are perfect in the

sense that they do not generate false or erroneous data.

 Four of the 8 sensors perform a linear scaling of their output before presenting it

to the RNN. The reason for the linear scaling of the sensory data is to keep the data

within the range of the RNNs squashing/activation function. The 8 sensors output a

range of values based upon their inputs except for the touch sensor, which can only

output 2 discrete values. The touch sensor is modeled after a momentary toggle switch,

with 2 positions: on and off.

FIGURE 17. Sensor arrangement

 The arrangement of the sensors is shown in figure 17. In this figure, the

embodied agent has 7 sensors located throughout its body. The touch sensors indicate

when the frontal appendages make contact with the ground plane, and the angle sensors

measure the angle the front appendages make with respect to the agents body. The hinge

joints also contain angular velocity sensors that feedback the rate of angular change to the

RNN. Finally, a direction sensor provides the ANN with a sort of compass.

 43

The other morphologies have a similar sensor arrangement, with the only difference

being the type or number of sensors.

TABLE 1. RNN Representation of Sensory Data

Sensor Type Output Range RNN Representation
Hinge [-pi,pi] [-3.1416,3.1416]
Slider [-1,1] [-1,1]
Ball/Socket [-pi,pi] [-3.1416,3.1416]
Linear Velocity [-300,300] cm/sec [-1,1]
Angular Velocity [-100,100] rad/sec [-1,1]
Height [0,1000] cm [0,1]
Direction [0,2pi] rad [-1,1]
Touch on / off -1,1

Effector Outputs and Angular Dynamics

 Every joint has a motor associated with it known as an effector. The effector

applies torque to a joints degree(s) of freedom to get it to pivot or slide at the desired

speed. Effectors have limits to the maximum amount of torque that can be generated, and

will be unable to apply more than a given maximum force or torque to a joint. The

embodied agents effectors allow them to control the relative angular or linear velocities

of two bodies connected via a joint, thus enabling them to control their appendages and

produce motion.

TABLE 2. RNN Representation of Effector Data

Effector/Joint Max Force/Torque Input Range RNN Representation
Hinge 800 gm-cm [-10,10] rad/sec [-1,1]
Slider 1200 gm-cm [-100,100] cm/sec [-1,1]

Ball/Socket 600 gm-cm [-10,10] rad/sec [-1,1]

 The RNN representation of effector data is shown in table 2. Due to the

activation function chosen for the output layer of the RNN, the RNN can only effectively

output values within the range of –1 to 1. These outputs are fed directly to the inputs of

 44

the effectors. The effector takes the input value and converts it into a desired speed by

linearly scaling the effectors inputs to the input range as shown in table 2. The maximum

force/torque is predetermined for each type of effector, and is designed to be similar to

several common types of DC electric motors. Using the equations below, the physics

engine can quickly determine the acceleration experienced by the bodies attached to the

joint based upon the desired speed set by the RNN.

FIGURE 18. Effector model for hinge and socket joints

 Effectors employ a simple model of real life motors, as shown in figure 18, with

two parameters: (1) the desired speed and (2) the maximum force that is available to

reach the desired speed. Effectors can also be used to model geared motors (motors

attached to gearboxes). Such devices are often controlled by setting the desired speed,

and can only generate a maximum amount of power to achieve that speed (Smith, 2002).

By employing the geared model, we can effectively reduce the number of outputs

required by the RNN to just one per effector: the desired velocity.

 45

Slider joints are simply modeled by employing Newton's second law to calculate

Force F:

Force: am F ⋅=

Where m represents the mass of the rigid body and a is the acceleration. The hinge and

socket joints are modeled utilizing Newton's second law for rotation to come up with the

basic torque equations as a function of force, angle, and radius is defined as:

Torque: θsin rF τ ⋅⋅=

where τ is torque, r represents the radius, F is the force, and θ is the angle between the

line made by r and F. The basic torque equation is used to calculate how much torque the

effector will apply at either a hinge or ball and socket joint.

 The other rotational force the physics engine must consider is the moment of

inertia. The moment of inertia of a rigid body is its measure of how difficult it is to start

rotating and it depends upon where the axis of rotation is (either a joint or the center of

gravity for a freely rotating body) and the mass of the object. The physics engine

computes the moment of inertia I, by first breaking up the rigid body into several small

pieces, then multiplying the mass of each piece by the square of the distance from its axis

of rotation r, and adding all these products up:

Moment of Inertia: ∑ ⋅= 2I rm

The rigid bodies of this simulation have a homogenous distribution of mass about the

body's center of mass.

 46

ANN Implementation Details

 The recurrent artificial neural network (RNN) is a fully connected multi-layer

neural network also known as an Elman Network. The topology of the network is made

up of 4 layers: (1) an input layer, (2) a hidden layer, (3) an output layer and (4) a context

layer. The number of neurons contained in the input and output layer differ per

morphology; however, the hidden layer consists of between 6 to 10 neurons that are fully

connected to both the inputs and the outputs. Furthermore, the hidden layer has 6 or

more layers of recurrence (context layers) depending upon the morphology of the

embodied agent. Table 3 describes the specifics of each RNN for a particular

morphology with the chromosome size representing the number of inter-neuron

connections within the RNN. Each inter-neuron connection within the RNN is assigned a

weight.

TABLE 3. RNN Implementation Details

 The RNN is a feed forward network employing hidden units and context

(recurrent) units, which develop internal representations for the input patterns and recode

those patterns in a way that enables the network to produce the correct output for a given

input. The context units remember the previous internal state and provide the embodied

agent with a short-term memory. The internal representations that develop are sensitive

to temporal context; the effect of time is implicit in these internal states. They represent a

memory that is highly task and stimulus dependent (Elman, 1990). This short-term

Agent Inputs Hidden Outputs Context Layers Neurons Chrom. Size Name
1 5 6 2 6 44 266 Crawler
2 9 8 6 8 78 646 Long Arms
3 13 8 4 8 76 660 Hopper
4 10 10 6 8 96 976 Runner

 47

memory is necessary for the embodied agent to develop locomotive behaviors that can

involve repetitive motor strategies (i.e., walking).

FIGURE 19. The structure of a generalized recurrent neural network

 The activation at time t, for an arbitrary unit in a recurrent neural network is

defined as:

))1(()(−= tnetfty iii

At each time step, the activation propagates forward through 1 layer of connections only,

where net represents some nonlinear activation function. Once a certain level of

activation is present in the network, it will continue to flow around the units, even in the

absence of new input. The activations in the hidden units are just the activations at time

t-1. A generalization of this technique is used in this thesis: copy the input and hidden

unit activations for a number of previous time steps. The more context (copy) layers that

are maintained, the more history we are explicitly including in the activation

computations. This approach takes into consideration not just the most recent inputs, but

also all the inputs seen so far by the network. Figure 19 and figure 20, illustrates this

approach.

 48

FIGURE 20. Hidden unit outputs are fed back into the input

 The activation function of the RNN is the bipolar sigmoid function. The bipolar

sigmoid was chosen over the standard sigmoid due to the bipolar nature of the sensory

input data and effector outputs. By employing a bipolar sigmoid activation function, the

RNN is able to effectively process the bipolar sensory data and generate bipolar output

necessary for the correct operation of the embodied agents effectors. Let w be the weight

matrix with n rows and n+m columns, where wi is the weight to unit i, b is the bias, and zi

is the input into the unit i. The activation for each unit can now be calculated, by first

computing the weighted sum of their inputs:

)()(tzwbtnet
i

iik ∑+=

Units then compute the nonlinear bipolar sigmoid function of their inputs:

1
))(exp(1

2
)1(−

⋅−+
=+

tnet
ty

k
k σ

 49

The bipolar sigmoid function is plotted in figure 21. The derivative of the bipolar

sigmoid function is:

)]1(1)][1(1[
2

)1(' +−++=+ tytyty kkk

σ

The hidden, context, and output layers of the RNN all use the same bipolar sigmoid

activation function. The parameter σ determines the steepness of the bipolar sigmoid

function and in this thesis was fixed at σ = 2. The external input at time t may still

influence the output of any unit until time t+n, where n represents the number of context

units. The output from the output layer is fed directly into the effectors of the embodied

agent.

FIGURE 21. Plot of the bipolar sigmoid function

 The bipolar sigmoid is closely related to the hyperbolic tangent function, which is

often used as an activation function when the desired range of output values is between –

1 and 1 (Faucett, 1994). The hyperbolic tangent is

)exp()exp(

)exp()exp(
)(

xx

xx
xh

−+
−−=

 This thesis utilizes the bipolar sigmoid as the activation function utilized in both

the hidden and output neuron layers of the RNN.

 50

FIGURE 22. Embodied agent RNN control system

 Sensory input is first fed into the RNN, as illustrated in figure 22. The RNN then

calculates the activations based upon the sensory inputs and the context layers. The

values produced at the output layer are fed directly into the embodied agents effectors.

The agent's effectors in turn control its appendages, thus producing movement. For every

time step in the simulation, this process is repeated.

GA Implementation Details

 The purpose of the genetic algorithm is to optimize the weights of the neural

network to evolve efficient locomotive behaviors for the embodied agent. A symbiotic

relationship exists between the GA and the RNN. The GA optimizes the RNN, and the

RNN produces agent behavior that is then scored and fed back into the GA. At startup,

the population's chromosomes are initialized to random values. The chromosome length

varies per embodied agent morphology, with 1 gene per RNN weight. The number of

connections, in table 1, represents the number of genes in the chromosome; a floating-

point number represents each gene. To help avoid the problem of premature

convergence, linear fitness scaling is utilized in this thesis. The GA of this thesis makes

 51

use of the standard single-point crossover operator as described by Goldberg (1986).

After the crossover operation, the gene has a probability of being mutated. The mutation

operator utilizes a Gaussian perturbation rather than a random mutation. The Box-

Mueller transform is employed to generate a perturbed weight with a mean of the original

weight and a standard deviation of 0.25. By perturbing the weights rather than randomly

selecting values for the mutated weights provides for a gradual change. Table 4 presents

the static parameters used for the GA.

TABLE 4. Genetic Algorithm Parameters

 The GA uses a predefined function to evaluate the fitness of each individual

member of the population. The purpose of the fitness function is to accurately evaluate

the genetic health or fitness of a particular individual, and thereby either increase or

decrease the probability of that particular individual reproducing and generating

offspring. The fitness function determines how an individual is rated in terms of genetic

fitness, and indirectly influences the behaviors of the embodied agent. The fitness

function was carefully chosen such that it would tend to award efficient locomotive

behaviors and penalize wasted effort and is based upon the distance traveled by the

embodied agent within a certain period of time. A higher fitness score is awarded to

embodied agents that are able to travel large distances in a given amount of time;

traveling off course is penalized via a reduction in the fitness score.

GA Parameters
Population Size 80
Crossover Rate 80.00%
Mutation Rate 0.10%
Fitness Scaling Linear
Mult. Factor (a) 9
Penalty Factor (b) 4

 52

Let x0 and y0 be the initial starting position of the embodied agent, α be the multiplication

factor for the distance traveled and β be the penalty factor, then the agents score F is

defined as:

βα)()()(00 yyxxxF −−−−=

The agent's fitness score Fitness is defined as:

{
0)()(

0)(0

>

≤
=

xFxF

xF
Fitness

The distance traveled along the x-axis is represented by x-x0, while the distance traveled

along the y-axis (representing an agent traveling off course) is determined by y-y0. The

fitness function positively reinforces agents whom are able to travel great distances along

the x-axis while maintaining course. The multiplication factor α = 9 and the penalty

factor β = 4 are used in the fitness calculations in these experiments.

FIGURE 23. Chromosome format

 The representation of the chromosome of an embodied agent is shown via a

simple example in figure 23. In this example, a 7 node ANN contains ten inter-neuron

connections. Every gene in the chromosome represents one inter-neuron connection

 53

weight. Each inter-neuron connection tying two neurons together must have a connection

weight associated with it. The weight structure is represented as a chromosome that is

optimized by the GA to produce intelligent behaviors via selection. The selection

mechanism used to determine which of the individuals will mate is based upon the

roulette wheel algorithm modified with a linear fitness scaling mechanism as described

by Goldberg (1986).

Embodied Agent Morphology and Details

 The morphology of the embodied agent is completely predetermined and is

designed to elicit a variety of different locomotive behaviors and test the generalization

abilities of our framework. Four different morphologies are introduced into the

simulation; each morphology represents an entirely different species of embodied agents

with its own unique genotype and is composed of a number of joints, joint types, sensor

inputs, effector outputs and rigid bodies as shown in table 3.

Sensors allow the intake of data from the environment and the effectors act as

motors attached to the appendages and allow the embodied agent to physically interact

with the environment. Each agent is composed of a hierarchy of 3-dimensional rigid

body parts that are connected via joints. As described earlier, each joint has effectors

(muscles) between them that exert a pulling or pushing force in any of the degrees of

freedom (up to 3 DOF for a ball and socket joint) and can model the flexion and

extension forces that pairs of biological muscles exert or the rotational torque of a geared

motor.

The environmental data collected by the sensors is represented as a floating-point

number, which is then fed into the RNN. The use of a bipolar sigmoid as the activation

 54

function of the RNN allows the network to accept a range of input values that can be both

negative and positive valued numbers. The bipolar sigmoid activation function also

allows for the network to produce an output compatible with the embodied agent's

effectors, which also require data to be presented in a bipolar format. The continual cycle

of input and output to and from the RNN is the mechanism that can produce intelligent

behaviors.

FIGURE 24. Embodied agent flowchart

 The embodied agent flowchart as shown in figure 24, describes how an embodied

agent can evolve intelligent locomotive behaviors. Though the flowchart describes the

Crawler morphology, it remains applicable to all the morphologies, as the only difference

from the standpoint of the system is the number of inputs and outputs. The flowchart can

be broken down into 4 steps: (1) the agent receives environmental feedback from the

 55

built in array of sensors attached to its appendages, (2) the RNN processes the incoming

sensory data, (3) the RNN sends output signals to the effectors and (4) the effectors

control the movement of the appendages and then repeat at step 1. The 4 steps are

continuously repeated to generate movement. The structure of the RNN determines the

types of movement behaviors demonstrated by the embodied agent. Upon completion of

a generation, the RNN is updated and optimized by the GA and the process begins anew.

TABLE 5. Embodied Agent Morphologies

Agent Joints Bodies Appendages Joint Type Sensors Effectors
Crawler 2 3 2 Hinge 5 2
Long Arms 6 7 2 Hinge 9 6
Hopper 4 5 2 Hinge/Slider 13 4
Runner 2 3 2 Ball & Socket 10 6

 The purpose of introducing multiple morphologies is twofold: (1) test the

generalization capabilities of the NE process in its ability to evolve intelligent solutions

of locomotion when presented with a variety of morphologies, and (2) prove the system

is capable of modeling a variety of joints and structures that exist within the natural

world. As stated earlier, the accurate modeling of natural world machines can

conceivably allow for transplantation of the evolved neural structures from embodied

agents of the simulated environment to the machines of the natural environment. The

composition of the agent's morphologies is detailed in table 5.

 56

Species #1 Simple Crawler Morphology

FIGURE 25. Embodied agent species #1 (simple crawler)

 The first embodied agent design we experimented with is a simple box like

creature consisting of 3 interconnected rigid bodies as shown in figure 25. Two

appendages protrude from the front of the torso and are attached to the torso via hinge

joints and allow for 1 degree of freedom about the agents y-axis. Feedback to the neural

network is provided via a set of 5 inputs sensors that feedback the angular velocity of the

2 hinge joints, touch sensors on each appendage, and a direction sensor acting as a sort of

compass. The RNN has 2 outputs that control the angular velocity of the hinge motors

(muscles). The creature morphology was designed with the thought the creature would

use the 2 front appendages to drag or pull itself forward.

 57

Species #2 Long Arm Morphology

FIGURE 26. Embodied agent species #2 (long arms)

The morphology of this embodied agent resembles that of the Box creature;

however, instead of 2 simple appendages protruding from the front of the torso, this

creature has 2 complex "arm-like" appendages protruding from the top of its torso as

shown in figure 26. A total of 7 rigid bodies make up the structure of this agent. Each

complex "arm-like" appendage is composed of 3 rigid bodies interconnected with hinge

joints and connected to the torso with a hinge joint. The "hands" are shaped like a paddle

to provide greater contact area with the ground.

 The RNN of this embodied agent processes nine input sensors feeding it a

continuous stream of data collected from the environment. The information processed

includes angular velocity of all 6 hinge joints, touch sensor feedback on each "hand," and

a compass like direction sensor. The RNN has an associated 6 outputs that are used to

control the muscles of each joint. The outputs determine the angular velocity that the

muscles will attempt to maintain at any given moment in time. This morphology was

introduced to determine if the RNN framework would be able to cope with a more

 58

complex embodied agent and learn how to effectively manipulate complex appendages

composed of multiple rigid bodies and joints.

Species #3 Hopper Morphology

FIGURE 27. Embodied agent species #3 (hopper)

 The third species of embodied agent introduces a morphology that is designed to

elicit a method of locomotion that involves jumping and is composed of 5 rigid bodies

interconnected via hinge and slider joints as shown in figure 27. This is a virtual creature

that has a "box-like" torso with 2 legs that attach to the underside of the upper torso via

hinge joints. Each "leg" is composed of 2 rigid bodies interconnected via a slider joint.

The slider joint gives the legs the ability to quickly extend. The only conceivable means

of locomotion this embodied agent can perform would have to involve some type of

jumping behavior. This morphology was introduced to see how well the framework

copes with a large fitness landscape with multiple peaks.

 This embodied agent has 13 input sensors providing information to its RNN.

These sensors provide the following environmental data: angular velocity of each hinge

joint, extension velocity of each slider joint, linear velocity of the torso with respect to

 59

the environment, angular position of each hinge joint, linear extension distance of each

"leg", angular position of the torso with respect to the horizontal ground plane, contact

sensors for each foot, and height of the torso above the ground plane. The 4 outputs from

the RNN that are fed to the effectors include: velocity of the "leg" extensions, and

angular velocity of the 2 hip joints.

Species #4 Runner Morphology

FIGURE 28. Embodied agent morphology #4 (runner)

 The fourth embedded agent morphology introduces a new complex joint type with

increased degrees of freedom and is composed of 3 rigid bodies interconnected with ball

and socket joints. The virtual creature has 2 "arm-like" appendages protruding from

either side of the torso as shown in figure 28. The 2 appendages are connected to the

torso via ball and socket joints that provide 3 degrees of freedom for each "arm". Due to

the 2 additional degrees of freedom vs. the hinge joint, this agent's RNN is required to

process significantly more information than the previous creatures utilizing hinge joints

with only 1 degree of freedom. The agent possesses 10 input sensors that feed the

following data into the RNN: angular velocity for each degree of freedom for both

 60

"arms" (6 inputs), contact sensors at the tip of each arm (2 inputs), contact sensor at the

underside of the torso (1 input), and a direction sensor (1 input). The 6 outputs from the

ANN provide velocity information, for each axis, to the effectors controlling the 2 "arm-

like" appendages.

 61

CHAPTER 4

EXPERIMENTS AND RESULTS

General Results From the Evolution of Locomotive Behaviors

 The problem of evolving intelligent locomotive strategies for an embodied agent

can be addressed using the techniques of evolutionary computation. In this particular

problem with a Newtonian physics based environment constraining the movement and

actions of the embodied agents, the NE paradigm performed admirably in its ability to

evolve efficient locomotive strategies within the constraints of the system. The most

important aspect of the NE techniques is its ability to learn without an external influence

directing the process. NE exploits the ANN for its learning capacity and uses the GA to

obviate the need for the traditional ANN learning strategies, such as BPTT, that require

the use of training data and external direction.

 The locomotive strategies evolved are unique for each species (morphology), and

demonstrates behaviors that are generally smooth, fluid and quite like-like. Furthermore,

the Hopper species developed a method of locomotion completely unforeseen in its initial

design. The evolution of intelligent behaviors occur due to the fitness function of the GA

optimizing the recurrent ANN of the embodied agent to evolve strategies that tend to

receive high fitness scores. The fitness scores represent the total distance traveled in feet,

minus a penalty for traveling off course, in the time period of 7.5 seconds. The fitness

graphs are representative of the average of 5 simulation runs per morphology.

 62

The evolved move sequences of the four agent morphologies are documented in appendix

A.

 Results are summarized in table 3, with the difficulty parameter representing the

percentage of the simulation time required to evolve an intelligent and efficient

locomotive behavior for a particular morphology. We choose to define an intelligent

locomotive behavior as a method of locomotion making optimal (or near optimal) use of

the morphology, sensors, and effectors to produce forward motion. Intelligent

locomotive behavior involves the embodied agent being able to learn enough about its

environment and how to manipulate its physical body to generate efficient movements.

Certain methods of locomotion, such as jumping, require more intelligence and

knowledge of the environment than other simpler methods of locomotion.

Results for the Embodied Agent Simple Crawler

 In this experiment, a population of the species "Simple Crawler" begins learning

how to move toward a target. Figure 29 shows the progress made during the initial 300

generations. During the first 20 generations, the agent quickly begins to learn how to

interact with the environment to generate effector outputs that tend to produce ever-

higher fitness scores. After 72 generations, the maximum fitness has reached 85% of the

eventual peak fitness achieved within the 300-generation simulation. The simple crawler

morphology achieves an eventual maximum fitness rating of 30.79.

 Initially, the first generations of embodied agents perform entirely random

movements; however, the population quickly learns the strategy of timing their arm

movements in alternating sequences, thus resulting in a higher fitness score. Within 20

generations almost the entire population has adopted the strategy of alternating "arm"

 63

movements to pull the rest of the body forward. The maximum fitness was recorded at

generation 295 when a fitness score of 30.79 is achieved.

Fitness, Simple Crawler

0

5

10

15

20

25

30

35

1 26 51 76 101 126 151 176 201 226 251 276 301

Generation

F
it

n
es

s

 avg

 max

FIGURE 29. Fitness graph of species #1 (simple crawler)

 This species, with its smaller brain and fewer context layers, quickly learned how

to manipulate its effectors to produce movement that results in a high fitness score.

Within 100 generations, the fitness peak has almost been found using NE techniques and

little improvement is realized in subsequent generations. The results from the simulation

show that NE is an effective method of training simple embodied agents to perform tasks

that involve manipulating a simple control system. The simple controls, consisting of

simplistic hinge joints (with their 1 degree of freedom) and effectors contribute to the

quick convergence upon a solution for this morphology.

 64

Results for the Embodied Agent Long Arms

 The introduction of a more complex morphology with several additional inputs,

outputs, and a larger ANN dramatically increases the fitness landscape of the NE process.

The control system (ANN) of the embodied agent successfully learned how to manipulate

the agent's "arms," each constructed of 3 rigid bodies connected via a total of 6 hinge

joints, to produce intelligent locomotive behaviors. The NE algorithms are once again

able to process and make use of the sensory data coming back from the joints and input

sensors to produce effective locomotive solutions as evidenced in figure 30.

Fitness, Long Arms

0

20

40

60

80

100

120

140

160

180

200

1 26 51 76 101 126 151 176 201 226 251 276 301

Generation

F
it

n
es

s

 avg

 max

FIGURE 30. Fitness graph of species #2 (long arms)

 The initial population again consisted of random effector outputs; however, the

population quickly learned to time its "arm" movements to generate forward motion

through a variety of techniques. For approximately the first 50 generations, several

somewhat successful locomotive solutions arise. The method of locomotion that initially

 65

evolved made use of the agent swaying its long and heavy "arms" to generate inertia to

produce forward motion without the "arms" touching the ground. This locomotive

behavior is quickly supplanted by individuals that began to use one "arm" to pull

themselves forward by digging their "hand" into the ground and pulling their torso

forward, and swaying their other "arm" to generate inertia to try and propel the body

forward at the same time; however, a disadvantage of this method of locomotion was the

little directional control it offered, which resulted in many of the agents traveling off

course and being penalized. This semisuccessful locomotive strategy lasted for several

generations until approximately the 50th generation when several individuals

simultaneously learn how to alternate their "arm" movements to allow each "arm" to pull

the torso forward and time their movements such that it affords directional control. This

effective behavior lasts until generation 200, when some of the agents learn a more

effective behavior of using both arms simultaneously to quickly pull the torso forward.

By quickly repeating this movement, the agent could produce forward motion without the

need for directional control. At generation 221, the population reaches 85% of its

maximum fitness during the simulation. The individual with the maximum fitness score

of 190.3 is born during the 279th generation.

 Once again, the results from this simulation demonstrate the effectiveness of NE

in producing intelligent and efficient locomotive behaviors for embodied agents with

complex articulated structures employing several distinct joints. NE is able to develop a

successful solution that effectively utilizes the more complex articulated "arm-like"

structures to produce a higher fitness score than the simpler crawler species.

 66

Furthermore, the results again demonstrate that NE is an effective means of evolving

solutions to complex control problems in an environment that models the natural world.

Results for the Embodied Agent Hopper

 The third species of embodied agent we examine has a morphology that was

designed to only allow for locomotive strategies that involved jumping. Though this

species may not be the most complex morphologically, this type of locomotion represents

the most complex movement behavior of all the species. Successful jumping behavior is

very complex; the agent not only needs to estimate the correct force vector to generate

the desired results, it also needs to estimate the landing point and be able to manipulate

its effectors in such a way as to have the feet in position for a landing. In other words,

the successful agent needs to lean how to perform equations that can calculate the

projectile motion of the body. Once again, using NE, we have successfully demonstrated

it is possible to evolve complex locomotive behaviors. The embodied agent was able to

successfully learn how to apply forces to its effectors in order to control its trajectory.

 Initially, the population of agents all did very poorly due to their random effector

outputs, which would result in the agent either quickly falling to the ground, or jumping

in a random direction and failing to land on their feet. After about 15 generations, some

of the individuals learned how to control the direction of their initial jumping motion,

thus improving their fitness scores over the agents who jumped in a random direction;

however, after their initial jump, they would still fail to land on their feet. This behavior

continued until at generation 270, when several individuals learned how to time their

initial jump so their bodies would do a full rotation in midair (summersault) and then land

upon their feet to continue the jumping and summersault behavior. Several of the agents

 67

were able to perform up to 3 of the summersault sequences before finally failing to land

on their feet. The fitness score of 119.89 was the highest obtained within the first 300

generations of evolution. The population produced an individual that reached the 85th

percentile at generation 276.

 Due to the complexity of this form of locomotion, we decided to allow the

simulation to run for a total of 1,500 generations. Very little progress was made from

generation 300 to 1,350; however, as the population entered its 1,375th generation, certain

individuals became good at learning how to control their summersaults and performing

numerous summersaults in a row, timing them so they would perfect the landing with

each summersault. Several individuals from this and subsequent generations can

effectively and intelligently perform 10 or more summersaults before running out of time.

 The results, as graphed in figure 31, demonstrate a type of evolution known as

punctuated equilibrium. In punctuated equilibrium, the population undergoes long

periods of stasis, with short and dramatic increases in fitness between these longer

periods of stasis. The difficulty of evolving intelligent behavior is evidenced by the

volatility in the maximum fitness score, as well as the punctuated equilibrium with fitness

bursts occurring at approximately generation 275 and generation 1,400. The volatility

demonstrated in the maximum fitness graph is likely due to the embodied agents testing

minute variations in effector outputs that result in wide variations in fitness score due to

the precision timing required to performing multiple summersault sequences.

 The results from this simulation again demonstrate the robustness of solutions that

are evolved using NE. The fitness graph appears to demonstrate a punctuated

equilibrium that occurred within this population of embodied agents, with long periods of

 68

stasis with abrupt and dramatic increases in fitness. NE was only semi successful in

generating a good solution within 300 generations; however, good solutions start to

appear by the 1,400th generation.

Fitness, Hopper

0

20

40

60

80

100

120

140

160

180

1

10
1

20
1

30
1

40
1

50
1

60
1

70
1

80
1

90
1

10
01

11
01

12
01

13
01

14
01

15
01

Generation

F
it

n
es

s

 avg

 max

FIGURE 31. Fitness graph for species #3 (hopper)

 The likely reason for the extended time period required to evolve a good solution

is the sheer complexity of the task due in part to the large fitness landscape. As stated

earlier, a successful embodied agent would require at least some knowledge of projectile

motion and be able to determine where it will land after each successive jumping motion.

Furthermore, the agent also requires the ability to precisely time the rotation of its body

perfectly to allow the feet to impact upon landing, so that it can immediately perform

another summersault sequence.

 69

Results for the Embodied Agent Runner

 The Runner species illustrates the most sophisticated genome in this experiment,

with a chromosome consisting of approximately 976 genes. The embodied agent

successfully learns to manipulate 2 "arms," extending from either side of its torso

connected via ball and socket joints with 3 degrees of freedom, to produce intelligent and

effective locomotive behaviors. This simulation demonstrates the effectiveness of

neuroevolution at evolving intelligent behaviors in embodied agents employing complex

joints with up to 3 degrees of freedom. A near linear improvement in performance is

observed, as evidenced by figure 32.

Fitness, Runner

0

20

40

60

80

100

120

1 26 51 76 101 126 151 176 201 226 251 276 301

Generation

F
it

n
es

s

 avg

 max

FIGURE 32. Fitness graph of species #4 (runner)

 70

 Within the first 10 generations, the population quickly improved its maximum

fitness scores by learning to manipulate its joints and appendages by applying varying

forces to the effectors. After the initial fitness gain, the population's fitness increased

almost linearly as the number of generations passed. The agents quickly learned to use

both arms by simultaneously swinging them forward, placing them on the ground and

thrusting them back to produce forward motion. With each passing generation, the

gradual improvement in locomotive abilities was almost unnoticeable; however, the

distance traveled with each passing generation increased progressively. Sometime

around generation 150, the arm movements of the embodied agent became more

aggressive and the torso began to lift off the ground with each successive step the agent

made. The peak fitness of 95.64 was obtained in generation 284, with the 85th percentile

occurring during generation 200.

 The results for this simulation once again demonstrate the ability of

neuroevolution to evolve robust and intelligent solutions to a given problem. We have

demonstrated the ability of neuroevolution to generate solutions in a reasonable amount

of time for complex morphologies involving appendages connected via ball and socket

joints, very much how human arms or legs are attached. The results further demonstrate

the ability of neuroevolution to deal with large and complex neural networks involving

close to 1,000 inter-neuron connections.

Concluding Remarks

 The goal of this thesis is to develop and demonstrate a framework for evolving

intelligent behaviors in embodied agents. The virtual environment is modeled after the

natural environment to provide for evolved solutions that can be transferred to physical

 71

manifestations of the embodied agents. Results of the experiments show that the

evolution of intelligent behaviors in a virtual environment constrained by the rules of

physics is feasible. Agents display the ability to learn via a reinforcement style of

learning. Agents also learn to coordinate and time their movements to generate effective

locomotive behaviors, and in doing so, they are able to learn to adapt to their

environment. Furthermore, they are able to evolve these effective methods of locomotion

without any external agent directing the process or the need for training data. Although

the simulations make use of four predetermined agent morphologies, the agents

demonstrate robustness and the ability to make the best use of their morphology to evolve

locomotive behaviors.

TABLE 4. Summary of Fitness Results

 Max 85th Percentile Generation Difficulty
Crawler 30.79 26.17 72 0.24
Long Arms 190.30 161.76 221 0.74
Hopper 119.89 101.90 276 0.92
Runner 95.64 81.29 200 0.67

 The NE algorithm is not optimized for any particular morphology; however,

certain morphologies lend themselves to simpler locomotive solutions as is demonstrated

in table 3. The most surprising results were obtained with the Hopper morphology,

which turned out to be the most difficult morphology to evolve an intelligent locomotive

solution for. In comparison, the simplest morphology, the Crawler, only required only

about 24% of the simulation time to evolve an intelligent behavior. The Runner,

employing a more complex neural network than the Hopper, with over 976 genes, still

requires less computational time to evolve an intelligent behavior than the less complex

Hopper agent.

 72

The Hopper, with its 660 genes required 92% of the simulation time to evolve a

locomotive behavior that can only be called "adequate." In reality, the Hopper had not

yet reached its full fitness potential within the 300 generations provided for in our initial

simulations. Even after extending the simulation run out to 1,500 generations, the

Hopper morphology appears to still be evolving. It is likely the difficulty the NE process

is having with the Hopper morphology is due to the restrictive means of locomotion that

the morphology dictates. The Hopper can only move by jumping (or hopping) from one

location to the next; jumping requires planning, timing, and knowledge of the

environment. Furthermore, the type of jumping performed by the hopper (performing

360 degree summersaults in midair), requires precision timing to perfect the landings to

allow multiple jumps to be strung together. This type of intelligent behavior involves

precision control over the effector outputs and an advanced knowledge of the inner

workings of the environment that takes time to evolve. This is likely the reason the

population of Hoppers is still evolving after 1,500 generations.

The results demonstrate that the complexity of the genome may not be as an

important factor as the constraints imposed by the morphology of an embodied agent.

Agents that evolve locomotive behaviors requiring intimate knowledge of the

environment, such as being able to predict how much force is required to jump a distance

based upon gravitational pull, require increased amounts of computational time to evolve

an intelligent locomotive behavior. These agents use the additional time to evolve

models of their environment that may include projectile motion, friction, and rotational

and rigid body dynamics.

 73

Furthermore, the agents evolve the ability to make use of these models by learning how

to control their physical structures by the application of forces via their effectors.

 Additionally, the results show that neuroevolution may possibly be a viable

solution to evolving complex control solutions for physical machines. Future

developments should take into consideration new advancements in neural network

technologies and neuroevolution techniques while at the same time exploring the

possibility of evolving ever more complex behaviors such as path following and

competition amongst the agents.

 74

CHAPTER 5

FUTURE DEVELOPMENTS

This chapter describes the future vision of this thesis. As explained earlier, the

long-term goal of this study is to evolve intelligent behaviors that can be implanted into

machines and robots that inhabit the natural world. The following is a list of

recommendations for future enhancements to the proposed system.

Embodied Agents

Morphology dictates how successful the embodied agent will be at completing its

task. If the goal is to embed intelligence in a machine that exists in the natural world, the

embodied agent morphology should model that of the physical machine. With an

accurately modeled machine, the embodied agent's ANN should be transferable to the

machine existing in the natural world. In this section, we first examine how different

morphologies allow for interaction with the environment and what type of processing is

required to handle the vast quantity of incoming sensory data.

Morphologies

An embodied agent with a complex morphology generally has more opportunity

to interact with the environment in ways previously unexplored. An example would be

an agent with a complex articulated "arm-like" structure that modeled a human "arm" and

"hand." The agent with such a structure could theoretically perform many of the same

coordinated movements and tasks that a human could; however, the feedback from all the

 75

sensors within the articulated "arm-like" structure would likely require an ANN with an

extremely large number of neurons to process the input data. Such an ANN would

require copious amount of time to compute the movement in the next time step.

Furthermore, training such a monstrosity could be next to impossible due to the extreme

size of the fitness landscape.

Currently, a compromise must be maintained. A morphology that is too complex

will result in an unusable system due to the vast number of feedbacks into the ANN.

Biological entities make use of their complex morphologies to develop and demonstrate

intelligent behaviors. Learning about how neurons are organized and their interaction in

biological entities can lead to a better understanding of behavior. The brain of a

biological entity may only concern itself with the general control of its body rather than

having to process each and every sensory input. An example of this is the movement in

the body of a chicken after its head has been severed. The body will often continue to

run about for several minutes after the brain and head have been completely removed

from the body. Some form of control system must still be interacting with the body that

does not rely upon the brain for control of certain motor movements. By modeling such a

control system in the embodied agents, it may be possible to relieve the ANN from

handling the multitudes of inputs present with a complex morphology and thus reduce the

overall fitness landscape of the system.

 Another area the future developer may consider is simple morphologies. Most

robotic vehicles of the natural world utilize a wheeled platform. Simplifying the

embodied agents by removing the complex articulated joint structures currently used for

locomotion and replacing them with a wheeled platform should allow the ANN to devote

 76

more of its resources to developing intelligent behaviors. A simple 4-wheeled platform

would require a minimum of inputs and outputs to control locomotion and the rest of the

inputs can be devoted to sensors that can provide the ANN with additional environmental

data. The 4-wheeled platform would likely require at most 2 inputs: (1) current linear

velocity and (2) current front wheel angles. One output should suffice for powering the

rear wheels in either a forward or reverse direction. This type of morphology can be

modified to model a variety of different wheeled vehicles.

Artificial Neural Network

 Currently, the recurrent Artificial Neural Network utilizes evolvable weights;

thus, the actual structure of the ANN is fixed. An evolvable ANN structure may provide

some benefits such as quicker convergence upon a solution, or more efficient ANNs that

complexify as necessary to provide the optimal solutions. Neuroevolutionary algorithms

that begin with a minimal network and complexify the structure as needed may also

obviate the current trial and error method of determining the correct number of hidden

and context layers to start the simulation with. Kenneth Stanley's NEAT (2002)

algorithm may be of use to the future developer in this regard.

 Further consideration of different Neural Network models may provide a more

biologically plausible model of the brain. Neural Networks are simulations of biological

brains, with the main idea being that by simulating the various aspects of a biological

brain, replication of some aspects of the brains capabilities (decision making, pattern

recognition, etc.) should occur.

 77

The current recurrent neural model employed uses the notion of clock timing (similar to

that of a digital computer) that specify moments at which inter-neuron transmissions can

occur and it further assumes the amplitude of the signal sent by a neuron is constant over

the full period between clock timings.

The approach taken by traditional neural models is very different from how an

actual human brain works. The human brain's neurons send out signals in brief "spikes, "

lasting approximately one millisecond and reaching its peak amplitude for only a very

brief moment. Spiking Neural Networks (SNNs) are neural network simulations that

attempt to use the more accurate "spiking" model of neural output signals. The

implementation of a SNN is more biologically plausible and may allow for further novel

behaviors to emerge.

Environmental Issues

The environment in which the evolution occurs is extremely important to the final

results. The virtual environment places the same constraints on the embodied agents as

the natural environment would if the embodied agents were realized in physical form. It

is likely any physical realization of the embodied agents would encounter "obstacles" in

the natural environment; thus, in order to allow the embodied agents to learn to cope with

obstacles, they should be modeled within the virtual environment.

A complex environment with obstacles that the embodied agents will require

knowledge of how to avoid (or make use of) may provide for robust evolved behaviors.

The future developer may consider embedding obstacles within the virtual environment

to elicit new behaviorisms. A further consideration may be to allow the embodied agents

to interact or compete with each other.

 78

One example would be a maze like series of walls the embodied agents would have to

navigate through.

Fitness Function

The fitness function directly determines how an agent will be rewarded based

upon its performance within the virtual environment. By modifying the fitness functions,

a variety of behaviors may evolve. One such modification a future developer may

consider is to allow for a dynamic fitness function that evolves the embodied agents in a

series of steps, the 1st of which may be to evolve locomotive behaviors. After the

population of agents has evolved sufficient locomotive behaviors, the dynamic fitness

function can be changed to evolve for a new behavior such as path following in the hopes

the agents will not forget how to move. In a step-by-step fashion, it may be conceivable

for the future developer to evolve complex behaviorisms in small developmental steps.

Parallel Implementations

As described earlier, the evolutionary algorithms are inherently parallel processes;

thus, the notion of a parallel implementation is the next logical step. Learning in a

parallel-distributed environment reduces the computational load on one computer and

enhances the overall performance. However, the communications necessary for the

proper functioning of the evolutionary algorithms is more effective on one computer.

The majority of the processing time is spent performing physics computations on

the eighty individual agents. Any parallel implementation of this system that hopes to

afford a speed-up would have to consider the physics engine. The newer CPUs from

AMD and Intel include SIMD instructions that the future developer may wish to optimize

the physics engine for. In certain situations utilizing the SIMD unit rather than the

 79

floating-point unit of the CPU will allow for 4 floating-point calculations per clock cycle

and may result in an enormous speed advantage.

 80

APPENDIX A

 81

APPENDIX A

(a) (b)

(c) (d)

(e) (f)

FIGURE 33. Set of evolved move sequences for the crawler morphology

 82

(a) (b)

(c) (d)

(e) (f)

FIGURE 34. Set of evolved move sequences for the long arm morphology

 83

(a) (b)

(c) (d)

(e) (f)

FIGURE 35. Set of evolved move sequences for hopper morphology

 84

(a) (b)

(c) (d)

(e) (f)

FIGURE 36. Set of evolved move sequences for the runner morphology

 85

REFERENCES

 86

REFERENCES

[1] Spears, W., De Jong, K., Baeck, T., Fogel, D., and de Garis, H. "An Overview of

Evolutionary Computation." European Conference on Machine Learning. (1993)
1.

[2] Wolfram, Steven. 2002. A New Kind of Science. Champaign, IL: Wolfram Media, Inc.

[3] Fogel, David. 2000. Evolutionary Computation: Toward a new Philosophy of

Machine Intelligence. Piscataway, NJ: IEEE Press.

[4] Lorentz, E. N. "Deterministic nonperiodic flow." Journal of Atmospheric Science. 20.

(1963) 130.

[5] Langton, C. "Studying Artificial Life With Cellular Automata." Physica 22D (1986)

120-149.

[6] Mitchell, M. 1999. An Introduction to Genetic Algorithms. Cambridge, MA: MIT

Press.

[7] Goldberg, David E. 1989. Genetic Algorithms in Search, Optimization & Machine

Learning. Reading, MA: Addison-Wesley.

[8] Fausett, Laurene 1994. Fundamentals of Neural Networks: Architectures, Algorithms,

and Applications. Upper Saddle River, NJ: Prentice-Hall.

[9] Elman, Jeffrey L. "Finding Structure in Time" Cognitive Science 14 (1990) 179-211.

[10] Sims, Karl, "Evolving Virtual Creatures" Computer Graphics (Siggraph '94) Annual

Conference Proceedings (1994) 43-50.

[11] Moriarty, David E. "Symbiotic Evolution of Neural Networks in Sequential Decision

Tasks." PhD Dissertation; Technical Report AI97-257, Department of Computer
Sciences, The University of Austin Texas. (1997)

[12] Stanley, Kenneth and Miikkulainen, Risto, "Efficient Evolution of Neural Network

Topologies," Proceedings of the 2002 Congress on Evolutionary Computation
(2002).

 87

[13] Menczer, Filippo, "Life-like agents: Internalizing local cues for reinforcement
learning and evolution," PhD Disseration; Department of Computer Science and
Cognitive Science, The University of California, San Diego. (1998).

[14] Godfrey-Smith, Peter, 1996. Complexity and the Function of Mind in Nature.

London: Cambridge University Press.

[15] Reynolds, Craig W. "Flocks, Herds, and Schools: A Distributed Behavioral Model,

in Computer Graphics," SIGGRAPH '87 Conference Proceedings. 21(4) (1987)
25-34.

[16] Smith, Russell, 2001. Open Dynamics Engine v0.03 User Guide. Available from

Russell Smith, Ph.D. site, http://www.q12.org/ode/ode-0.03-userguide.html

