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This thesis explores the application of evolutiyn&inforcement learning
techniques for evolving behaviorisms in embodieenag existing within a realistic
virtual environment that are subject of the constsaas defined by the Newtonian model
of physics. Evolutionary reinforcement learningsigvolutionary computation
techniques, which are based to some degree, @vthetion of biological life in the
natural world. These techniques are generallyhsistec in nature and involve random
decisions that guide the optimization process we@sses of selection, mutation and
reproduction. A common problem of using evolutigheomputation techniques to
evolve intelligent behaviors in embodied agenthiéssimplicity of the environment and
overall system often precludes any life-like bebavifrom emerging. Furthermore, the
commonly used supervised learning techniques dreragly difficult to apply to
embodied agents that employ a complex control Bysiéis thesis proposes a
methodology, based on neuroevolution, that effetfiaddresses this issue of
environmental complexity and learning; thus, allogvfor the emergency of like-like and

efficient behaviors.
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CHAPTER 1
INTRODUCTION
Overview

This thesis proposes a methodology for evolvinglligent behaviors of
embodied agents within a physically realistic eowiment as a significant step toward
devising evolutionary techniques for the emergefammplex intelligent behaviors that
utilize techniques inspired by biological evolut@wy systems. Evolutionary
computational techniques allow the embodied ageritsarn to interact with their
environment in such a way as to produce complexgem¢ behaviors. Evolutionary
computation is an umbrella term often used to diesq@roblem solving systems that
incorporate computational models of biological eNi@n. Evolutionary computation
consists of a variety of evolutionary algorithmsisas genetic algorithms, classifier
systems, evolutionary strategies and genetic pnogriag. All of these algorithms share
the common theme of simulating biological evolutadnndividual structures via the
modeling of selection, mutation and reproductiéfthough simplistic from a biologist's
viewpoint, these algorithms are sufficiently comyle provide robust and powerful
adaptive search mechanisms (Spears et al., 1993).

To better understand the evolutionary computgtiemadigm, some discussion of
biological evolution is warranted. In nature, extan consists of several different

processes. The generation of biologically divergmnisms that compete with each



other for limited resources in the environmentgotfise known as natural selection, is
the fundamental process that drives biological @vah. Individuals that are better able
to obtain those resources are more likely to seraind propagate their genetic material
to their progeny.

The genome represents the encoding of genetiowafiton in nature. Sexual
reproduction allows for 2 individuals to producéspfing that contain a combination of
genetic information inherited from both parentsie trossover operator in the genetic
algorithm models what occurs at the molecular l@véliological systems and is also
known as recombination. This crossing over ofrimfation from the 2 parents, along
with random bit mutation, is part of the drivingde being natural evolutionary
processes. Through these processes nature delettts fittest individuals (ie. survival
of the fittest) in a population to procreate anddurce offspring.

An embodied agent is an autonomous living creatuijected to the constraints
of its environment. The term "embodied" differaigis these agents from regular
software agents, which are pieces of softwaregbgbrm tasks in an intelligent way as
defined by their authors. Examples of softwarenggyenclude web spiders or IRC bots.
Embodied agents in their simulated environmentlEasubjected to the same physical
forces that govern bodies in our natural environiys allowing for a less difficult
physical realization of the embodied agent uponmetion of the evolution process.
Every embodied agent has its own Artificial Neuxatwork (ANN) that acts as the brain
that processes sensory input and generates mdfmrtour he study of embodied
software agents evolving within a virtual enviromhbas been an active research area in
Artificial Intelligence (Al) and Artificial Life (ALife). Recently, the field of Artificial
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Life has produced several such systems that denad@stvolution; however, applying
the results to physical systems has proven toffieul, if not impossible due to the
often-simplified nature of the environment the ageare evolved within.

Problem Statement

This thesis attempts to solve the problem of anglintelligent behaviors that are
readily transferable to real world machines exgstmthe natural world. Doing so
requires the use of an accurately simulated enmisa utilizing evolutionary
computational paradigms. Due to the evolutionatyre of such systems, the solutions
evolved can often be more robust than the solutimmengineer ourselves; however,
solutions from existing systems are generally reotdferable to machines of the natural
world due to the overly simplistic virtual enviroemts employed during development
and training. Currently, much effort is being d&dto designing control systems for a
whole slew of electro mechanical devices; thesérobsystems require the ability to
effectively process the sensor inputs and genemnater outputs that allow the device to
properly and intelligently interact with its envinment. The more complex the device,
the more effort is needed in designing the corgtystem for even such basic tasks as
locomotion. Much of this effort can be alleviaiéd framework existed where such a
device could be accurately modeled and its cosfrsiems simultaneously evolved. The
significance of this thesis is to provide a framewfor such a system capable of
modeling a variety of physical devices and/or lgatally plausible agents and
simultaneously employing the techniques of evohdiy computation to evolve
intelligent control solutions. The accurate moalglof our natural environment is an
often-neglected area of A-Life research; however d@monstrate that devoting the
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computational resources to an accurate environrheratdel and simultaneously utilizing
complex biologically inspired algorithms can havgositive influence on the
effectiveness of the emergent behaviors demondtlgt¢he embodied agents.

Another important problem of A-Life research addied in this thesis is the
difficulty of training the embodied agents. Artifal Neural Networks (ANNSs) are
models of biological Neural Networks; however, malgiorithms for training an ANN
employ supervised learning algorithms and requi@akn solutions to the problem be
presented to the ANN during the training stagee Slheer complexity of the embodied
agents, with their complex control systems, makejgossible to provide the ANN with
the accurate training data to allow for supervideayning methods to be employed.

This thesis will present a general methodologyefarlving optimal or near
optimal solutions to complex control problems tvauld otherwise require enormous
effort if approached using conventional methodadsgiThe difficulties and pitfalls of
traditional methods can often be avoided in thetirety by the novel use of
Neuroevolution (NE) techniques to train an embodaigent without requiring the use of
a supervised learning algorithm or an external adeacting the process.

Due to the complexity of modeling real world plogsias well as the enormous
overhead required for the complex evolutionary atgms, earlier simulations required
the vast computational resources of supercompttergever, today with the widespread
availability of powerful commodity computing hardwgathe evolution of intelligent
behaviors of embodied agents within a physicallyuaate environment has become

computationally feasible.



Approaches of This Thesis

This thesis approaches the problem by addressingéparate issues: (1)
environmental complexity and (2) learning algorithnit is important to provide
sufficient environmental complexity and accuracyriadeling the natural environment if
we ever wish to have a physical manifestation efaimbodied agent. The virtual
environment employs the Newtonian model of phyag# applies to the natural world.
Bodies constrained within the virtual environmeehave as they would in the natural
world, with forces such as inertia and frictioniagtupon them. The embodied agents
that live within this virtual environment are ndil@ to violate any of the constraints of
the environment. The evolutionary algorithms emgptbin the evolution of the
embodied agents brain allow them to learn via @foecement style of trial and error
known as neuroevolution (NE). Furthermore, the @ddd agents operate individually
by collecting information from a variety of senggans, further effectuate changes in the
environment by exerting forces through musclespass on their knowledge from
generation to generation. The embodied agentdevead with a fully connected ANN
with feedback (recurrent) connections; a genegordhm is employed to search for an
optimal weight structure for the ANN that will tetal achieve a higher fitness score. The
learning process for the individual embodied ageatgradual process of adaptation and
mutation that occur when a generation of embodighs mate and produce offspring.
Highly fit individuals have a greater probabilitymating than that of less fit individuals.

An initial population of embodied agents are sselin the environment without
any instructions or external stimulus. Since wealtly wish to elicit locomotive
behavior, each individual is evaluated and assignithess score based upon its distance
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traveled during its brief life. Individual embodiagents whom are able to traverse a
long distance quickly are given a higher fitnesmtslower individuals or individuals
who are unable to maintain the correct coursehigfashion, natural selection tends to
favor individuals that are able to learn how to mauickly and efficiently. The
individuals with intelligent locomotive behavioentd to mate with each other and as a
result may generate even faster and more effitd@oimotive behaviors.

Rationale for This Approach

Competition alone is not enough to allow for coexplocomotive behaviors to
emerge. By introducing a sufficiently complex agdlistic environment, the individual
embodied agents can evolve infinitely complex b&rav Furthermore, by allowing a
population of agents to compete with each otheainire's game of survival of the fittest,
enormous pressures are placed upon each indivioeablve effective locomotive
behaviorisms or die. The individual embodied agetart with no knowledge of their
environment; however, with each subsequent geoersknowledge of how to survive
within the environment is passed to the offsprihgthis way, knowledge is preserved
and passed on to each subsequent generation. Thaugmbodied agent learns
individually; collectively, the gene pool contaitie body of knowledge of the
population as a whole, thus through reproductioeféective agent can share its
knowledge with other individuals in subsequent gatiens.

The use of evolutionary algorithms to optimize shticture of the ANN allows
for a rapid convergence on an optimal solutiorafgiven problem. The evolutionary
algorithms approach employs stochastic processgsrerate results that significantly
outperform results that would otherwise be obtaitiedugh a random search or
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conventional optimization techniques. Though thaionary algorithms approach
makes use of random processes such as mutataamriot be stressed enough that the
results obtained are distinctly nonrandom. Theshbtmnof the evolutionary approach are
twofold: the embodied agents do not need to corgay prior knowledge of their
environment and it is sufficient to define the desb and let the embodied agents come

up with the optimal solutions.



CHAPTER 2
BACKGROUND AND RELATED WORKS

Motivation and Introduction to the Background

This chapter provides background material forrdegler and presents similarly

related works by other researchers.
Related Fields

Several branches of research concern themseltlestudying intelligent
behavior, complexity, evolutionary computation orexgence of complex behaviors
from simple interactions. Stephen Wolfram providasxcellent summary (Wolfram,
2002) of no less than 17 distinct disciplines ratato those fields of study. Many of
these areas have influenced, in some way, thetdinsctaken in this thesis.

Classical Artificial Intelligence

Although most scientific disciplines, such as neatlatics, physics, chemistry and
biology, are well defined, the field of artificiatelligence (Al) remains enigmatic
(Fogel, 2000, p. 1). Many of the proposed defomis of Al rely upon comparisons to
human like behavior. We choose to define Artifi¢craelligence as the branch of science
that deals with designing machines that can findtsms to complex problems in a more
human-like fashion. Whatever the definition, mastearchers agree that classical
methods of Al have taken a top down approach. tdpelown approach treats cognition

as a high-level phenomenon that is completely ieddpnt of the low level details of the



implementing mechanism. The classical, or top-damproach to Al is deductive (i.e.,
given a set of basic rules, the system is to dedinzd combination will produce the
desired result) and deals with descriptions ofviaat features of the task.

In 1950, Alan Turing pondered the question "Carrees think?" Rather than
attempt to answer the question, he devised altasstill bears his name. The Turing test
begins with 3 people, a man (A), a woman (B) anch&arrogator. The interrogator, in a
room separate from the man and woman allowing éosensory input, may ask
guestions of both the man and woman. The intetoogeobjective is to discern which
person is the man and which is the woman. PaamntipA) may be deceitful; however,
the object for participant (B) is to help the imtayator. Turing then pondered what
would happen if a machine were to take the plageadicipant (A) or (B). Should the
machine perform as well as a human participamtag declared to have passed the test.
The original question of whether the machine sholdeh be judged as being capable of
thinking was left unanswered by Turing.

The popularity and acceptance of the Turing testised early efforts on
simulating aspects of human behavior. In 2000eFagote, "At the time (1950), it was
beyond any reasonable consideration that a comphterd pass the Turing Test. Rather
than focus on imitating human behavior in convéssatattention was turned to more
limited domains of interest.” Thus, classical At@ised its energies on problems of
limited domain such as game playing strategiesexipert systems.

The initial focus of Al was to eventually createngral problem solving
programs; however, after several unsuccessfulmpiediry attempts, the focus of Al
narrowed considerably through the 1960s to theyd®@80s. Specific search algorithms

9



were applied to very narrowly defined problems thate typical of human experts in
their field of expertise. It was discovered thabWwledge in a particular field could be
represented in a form that allowed a computer ttopa reasoning activities upon it.
Researchers again employed the top-down approatie afassical Al paradigm in the
development of the computer "expert system.” & Wwealieved that such a system would
offer many advantages over a human expert, supbrasanence and convenience.

In the late 1980s, the branches of Al split ird@esal directions, and are often
difficult to classify; however, 2 recent branchég\bthat rely heavily upon a bottom up
approach are: Machine Learning and Search ananiatiion. The Search and
Optimization branch deals with planning, constrastisfaction and function
optimization. The Machine Learning branch concésef with Neural Networks,
Inductive Programming, Data Mining, Bayesian Netkgoand Decision Tree Learning.
The evolution of embodied agents incorporates nustfimm both the Machine Learning
and Search and Optimization branches of Al. Theoboup approach takes its cues
from biological evolutionary systems.

Artificial Life

Artificial life (A-Life) is the scientific field d study that attempts to model living
biological systems through complex algorithms. Life and Evolutionary Computation
both make use of evolution and the bottom up ambrdaowever, A-Life emphasizes the
development of intelligence through emergent badrani complex adaptive systems,
whereas Evolutionary Computation focuses on progdi framework for optimization

processes in general.
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The primary objective of A-Life is to produce iHigence or life through local
interactions among a large population of virtuaratg, as well as the study of the
evolutionary process of life in general. The psscef producing intelligence or global
behavior from local interactions is called an ereetgroperty. Life can be classified as
something capable of reproducing itself and adggtnts environment. Life is also
capable of independent actions that are not dedglech external agent. These are 2
properties that are shared in common with A-Life.

The environment used in A-Life experiments doeshawe to mirror the natural
world. Rather, most of the A-Life simulations malse of a simplified environment or
an environment with entirely different rules thaattof our natural world. These
simplified environments allow the researcher tocamtrate on studying the emergent
properties of life rather than having to deal wilib complexities of the environment.
Chaos Theory

The field of chaos theory concerns itself with stedy of unstable a-periodic
behavior in deterministic nonlinear dynamical sgste The basic principle that describes
chaos theory is the "Butterfly Effect.” The BuftgEffect states that small variations in
initial conditions result in huge and dynamic tfansiations in the resulting events. The
term butterfly effect arose from the claim thatudtérfly flapping its wings can, given
enough time, affect the direction of a hurricandlanother side of the planet. The main
significance of Chaos Theory is the implicationtthay small uncertainties in the initial
conditions of a system will eventually lead to babathat is impossible to accurately

predict.
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FIGURE 1. Lorentz strange attractor

The most identifiable symbol, forever linked to Betterfly Effect, is the famed
Lorentz Strange Attractor (see figure 1). With #a to describe convection in
meteorological systems, Lorentz (1963) came totifyeB nonlinear equations that show
chaotic behavior can arise from simple deterministodels. The strange attractor is a
plot of these 3 equations. Starting from anyahitiondition, the calculations will
approach the path displayed in figure 1; however dctual path followed by the
equations is highly dependent upon the initial comigs. Lorentz apparently discovered
the chaotic nature of these equations after quiadglculating his simulations with input
data that had the fractional parts truncated te si@fa entry time on his computer
system. He successfully demonstrated sensitiveragmce upon initial conditions.

Chaos theory states that many apparently randomtsean be represented using
simple computations, when iterated, that produceptex results. The values from each
stage of the iterated computations are generalllgdek into the next stage. Different
algorithms produce different amounts of complewtyen iterated. Lorentz was the first

to show this type of chaotic behavior (Lorentz, 396
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The results of a chaotic system, while determiniatid predictable in theory, are in
reality random and unpredictable due to the shemptexity of dependencies. Results
from a chaotic system can appear to be far frorarrak

Chaotic Systems can only be predicted if all thruta to the system and all the
rules of the system are known. Even chaotic syst&ith known rules will likely remain
unpredictable due to the butterfly effect. Slightors in measuring the inputs of these
systems will cause large deviations in the predicgsults vs. the observed results over
time. Many natural processes, as well as manymde processes, are chaotic systems.
Examples include a dripping water faucet, the fax@nmarkets and global weather
patterns.

Cellular Automata

Cellular automata (CA) are discrete dynamicalaystwhose behaviors are
completely specified in terms of a local relatioh.uniform grid usually represents
space, with each cell location containing somedfigata. Time in a CA universe
advances in discrete steps and the laws of suckvarge is generally expressible in a
small lookup table of rules.

A cellular automata is basically an array of c#ligt interact with their neighbors.
This array can take on any number of dimensionse-@mensional CAs are popular
with researchers due to their simple to analyzestuEach cell has its own state and
receives input from connected cells, by usingetsos$ rules it can then determine what its
reaction will be. The reaction a cell takes wél & change of state and can also trigger a

cell to send messages to other cells in more con(hes.
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FIGURE 2. Conway's game of life

A key feature of CAs is their ability to allow cotegity to emerge by interaction
of simple individuals following simple rules. Silami to the butterfly effect of chaotic
systems, the dynamical systems defined as CAs sftew huge resultant effects due to
small changes in the starting conditions. The-keetvn Cellular Automaton is John
Conway's Game of Life and is played on a 2-dimaraigrid as demonstrated in figure
2.

Chris Langton (1986) proposed the lambda paranietéhe standard CA as the
percentage of nonzero transitions in the CAs statesition table and established its
significance as a dynamical measure. The lambdangter, when increased from 0 to
1, shifts the behavior of the CA from simple momato(Class | as defined by Wolfram)
to periodic (Class Il), then to chaotic (Class, Mhile passing briefly through an
intermediate stage of long transients and complextsires (Class 1V). Langton
theorized that living systems and other self-orgiaugi systems display qualitative
features associated with this brief interlude betwgeriodicity and full chaos (Langton,

1986, pp. 120-149).
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The Neo-Darwinian Paradigm

The Darwinian paradigm uses the theory of Nat8edéction or "survival of the
fittest" as the mechanism for evolution and creativersity among species. Variations
in an individuals genome that provide advantagespnoductive success will be favored,
while other variations that decrease reproductieesss will tend to be eliminated. The
Neo-Darwinist theories of evolution form the undenpngs of the classical genetic
algorithm.

Application of Research Areas to This Thesis

This thesis makes use of many of the researcls aescribed above.
Neuroevolution (NE), the primary means of trainthg embodied agents, has benefited
from research into evolution, chaotic systems, @lllilar automata. The genetic
algorithm as employed by NE models biological etioluand the artificial neural
network models biological neural networks, bothrbarheavily from the Neo-Darwinist
theories of evolution.

A pivotal requirement for the embodied agentfiesability to learn from their
mistakes, and beget offspring with the tendendyeatee a higher fitness than their
parents. NE employs reinforcement learning teamesghat utilize Genetic Algorithms,
Artificial Neural Networks and Evolutionary Comptitan. The classical Al approach
cannot be utilized due to the rigid rules and latlearning and evolutionary algorithms.
A classical approach would likely not produce tbsults we are looking to achieve,;
therefore, we chose to implement techniques fraamgwer bottom-up approach to Al.

Adopting the use of Evolutionary Algorithms andizing the bottom-up
approach rather than the top-down approach oftioadil Al place great pressure upon
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the population of embodied agents to learn to im@rnd adapt their behaviors
otherwise face certain extinction. This use ofletron and survival of the fittest allows
the fittest embodied agents to evolve efficienblootive behaviors along with their
corresponding control systems without the neecifoexternal agent to direct the
learning process.

The Genetic Algorithm

Genetic algorithms (GAs) are evolution inspiregoaithms used for optimization
and machine learning based loosely upon biologiealution. Invented by John Holland
in the 1960's, his original goal was the studydd@ation as it occurs in nature and to
simulate such mechanisms in a computer systenin the case of Al, there exists no
clear definition of a GA. However, it can be stidt most methods called "GAs" have at
least the following elements in common: populaiohchromosomes, selection
according to fitness, crossover to produce newpafig and random mutation of new
offspring (Mitchell, 1999, p. 8). Unlike many oth@ptimization algorithms, the GA is
probabilistic rather than deterministic. The genatgorithm works by creating a large
population of individuals, each of which is repmeteel by a chromosome(s) that are
analogous to the chromosomes present in human DNW. individuals in the population
then go through a simulated process of naturalugol involving fitness calculation,
mating, reproduction and generation of offspridgsimple GA can be broken down into
6 steps: 1) Define and capture the problem intgeative function that will allow the
calculation of fitness of any potential solutiol tl2en create an initial population of
random individuals whose genes represent a soltditime problem defined above, 3)
then decode the chromosome and compute the fitaessery individual based upon the
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predetermined fitness function, 4) assign eachrmbsmme a probability of reproduction
based upon its fithess score, 5) according to tbbgbilities of reproduction, create a
new population by performing the crossover openattmeach pair of mating individuals
to produce a set of offspring which are then suligea small probability of bit

mutations, 6) if a suitable solution has been founadt the process, otherwise proceed at
step 3 with the new set of chromosomes generatddsrstep. One iteration of the above
loop is called a generation. The first generatibthis process operates on randomly
generated individuals; however, subsequent gepnesatf this process operate to
improve the population by employing the geneticrapens in concert with the measure
of fitness. The GA effectively searches the fimsmdscape for a peak that represents
the highest fithess score obtainable. Exploithgparallel nature of the search, as well
as the directed nature of the search itself, thasSgfenerally able to converge upon an
optimal solution. The repetition of the above stép several generations is the process
that drives for the selection of individuals of sessively higher fitness with each
passing generation (i.e., evolution). By allowthg simulation to run for a sufficient

number of generations, highly optimized solutionk tend to evolve.

1010 0001 0110|0011 1001 0111 Parent #1

1101 0101 1011({1111 1100 0110  Parent #2

1010 0001 0110 1111 11000110 Offspring #1

1101 0101 1011 0011 1001 0111 Offspring #2
FIGURE 3. The crossover operation

A simple genetic algorithm that yields good resift many practical problems is

composed of three operators: (1) reproductiongi(@sover and (3) mutation (Goldberg,
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p. 10). Reproduction is the process in which iihials mate according to their fithess
values. Individuals with a higher fithess havaghlr chance of reproducing and
producing offspring; hence, promoting their goodeg Simple reproduction generally
uses a method called roulette wheel selection wihergrobability of an individual
mating is proportional to its fitness. Simple $@goint crossover takes a pair of mating
individuals and combines their genes. The pointtath the 2 chromosomes cross is
generally randomly determined and is known as thesover point and is demonstrated
in figure 3. The simple mutation operator randomlydifies a gene to produce a new
value mainly for the purposes of exploration of fitreess landscape.

The fundamental theory behind the genetic algorithcoined: the Schema
Theorem. The theorem implies that GAs work by aiecing and manipulating short,
low-order "building blocks" of solutions of aboveesage fitness in an implicitly parallel
fashion. In other words, good solutions tend tortaele up of good building blocks.

The simple GA is prone to premature convergeneetdumultiple peaks in the
fitness landscape. At the start of a GA run ¢asmmon to have a few extraordinary
individuals in a population of mediocre colleaguédeft to the normal selection rule,
the extraordinary individuals would take over anigant proportion of the finite
population in a single generation, and this is girdéle, a leading cause of premature
convergence (Goldberg, 1989, p. 77). By scalfitness of the individuals, we can
help prevent premature convergence by giving lesght to large fitness variations early
on in arun, and giving greater weight to smalidds variations later in a run.

Because the GA is an optimization algorithm, it ba used to optimize the
structure of other Evolutionary Algorithms, suchfagificial Neural Networks. A
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slightly modified genetic algorithm that implemefitaess scaling is used in this
experiment, with the purpose of optimizing the @¢gonnection weights of the
embodied agent's ANN to produce intelligent locamebehaviors. The use of a genetic
algorithm to train an ANN is a novel and relativelgw approach to ANN learning

known as neuroevolution.
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FIGURE 4. Biological neural network

The Artificial Neural Network

Artificial Neural Networks (ANNSs) are informatigprocessing systems that have
certain performance characteristics in common witthogical neural networks.
Biological neural networks have neurons that emeitteical signals along an axon to the
dendrites of other neurons. Figure 4 demonstlraiesa biological neural network
transmits data. Artificial neural networks havebeeveloped as generalizations of
mathematical models of human cognition or neuralolgly (Fausett, 1994, p. 3). In other
words, Artificial Neural Networks are a differerdnadigm for computing that exploit the
parallel architecture of biological brains. Accogito Fausett, a neural network is
characterized by 3 things: (1) the architecturstarcture of the ANN, (2) the learning
method used to determine the weights of the netwaoré (3) the activation function of
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the neurons. A typical artificial neural networdnsists of a collection of "neurons” or
simple processing elements that attempt to mimia oruch smaller scale, the massively
parallel structures and connections of biologi@lmal networks (i.e., biological brains).
Every neuron in an ANN contains an internal sth#g is defined by an activation
function. Activation functions generally employanlinear squashing function such as
the hyperbolic tangent, or the sigmoid functiorthte weighted sum of the input signals
on a neuron. The architecture of a simple feedrdiod ANN consists of a collection of
neurons that are arranged into distinct layersfthratard propagate their output signals
into the inputs of the next layer of neurons. Galhg 3 layers are used: an input layer,
a hidden layer, and an output layer. A set of igfue fed into the first layer of the
network with each neuron taking the weighted suntsahputs and applying the
activation function before propagating its outputtie next layer of neurons and
eventually reaching the output of the neural nekwdviultilayer nets as described above
can be trained to perform nonlinear mappings fromm-@imensional space of input
vectors (n-tuples) to an m-dimensional output sgggeecett, 1994, p. 16). Another
important characteristic of ANNSs that are sharetthwiological neural networks is their
fault tolerance characteristics. In biologicalteyss, damage to the neural system itself
can often be tolerated with little ill effect anther neurons can often be trained to take
over the functions of the damaged cells. Similaalyificial neural networks can be
designed to be insensitive to small amounts of d@nta the network, and retraining can
occur with larger amounts of damage. The typieatfforwvard ANN configuration is

demonstrated in figure 5.
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FIGURE 5. Simple fully connected feed forward nénetwork

The architecture of the ANN determines its methbkarning or training. An
ANN can be trained using either a supervised ambroa an unsupervised approach. In
the most typical neural network setting, a simpkedf forward ANN architecture, learning
is accomplished via supervised training using dreewveral different learning
algorithms, the most common of which is the baappgation (of errors) algorithm.
Back propagation is the basis for training a suiged/ANN and is used to produce a
mapping of static (time independent) input to éict@utput. The back propagation
algorithm works by its application of the chaingdibr ordered partial derivatives to
calculate the sensitivity that a cost function Wwéh respect to the internal states and
weights of a network. In other words, back propiagas simply a gradient descent
method to minimize the total squared error of thpat computed by the net. The
prerequisites for training an ANN using the bacgagation algorithm include sample-
training data consisting of inputs to the ANN ahd torresponding expected outputs. A
back propagation net (a multilayer, feed forwardM\idained using the back propagation

algorithm) is generally used for solving staticsslification problems such as optical
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character recognition. A significant disadvantafjthe back propagation training
method is the requirement of training data. Feoesa applications, especially those
involving control systems, it is often impossibbegenerate a sufficient quantity of
training data.

Time is clearly important in cognition and is itkeeably bound up with many
behaviors (such as language), which express theaessas temporal sequences. Indeed,
it is difficult to know how one might deal with subasic problems as goal-directed
behavior, planning, or causation without some wagepresenting time (Elman, 1990).
Another type of ANN that makes use of time andathlbiologically more plausible and
computationally more powerful is the Recurrent #gtal Neural Network (RNN).

RNNs are artificial neural networks with adaptieedback connections. Each time a
pattern is presented on the inputs of an RNN, éspective neurons compute their
activation functions just as in a feed forward natey however, the net inputs to each
neuron now contain a term that reflects the sthtbeonetwork before the input pattern
was seen. The obvious advantage an RNN offerstbedraditional feed forward
network is "memory." The use of feedback connestiallow the RNN to have a
"memory" of past events; thus, pattern presentaddhe RNN will now take into
consideration what moment in time the pattern cec@iological neural networks
process information in a similar fashion to the RNINgure 6 demonstrates the feedback

connections and context units of the RNN.
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FIGURE 6. A simple recurrent neural network (RNN)

Drawbacks of the RNN include: they are computetily more intensive than
feed forward ANNs and the standard method of |e@rria back propagation of error
does not work with RNNs. New methods of trainifgN& have been devised; one
approach has become known as the Back Propagdtraudh Time (BPTT) method.
BPTT can be seen as an approximation to the ideairoputing a gradient that takes
into consideration all the inputs seen so far l®yrtetwork. The disadvantages of BPTT
are similar to the back propagation training metaond include the requirement of large
amounts of storage, computation, and training exesngonsisting of known solutions.

The embodied agent of this thesis is endowed antElman (1990) Recurrent
Neural Network for its biological plausibility anmbwerful memory capabilities. The
BPTT algorithm is unusable in this application hesmof the requirement of training
data. Furthermore, biological neural networks dbmake use of back propagation for
learning. Because of our desire to use evolutpalgorithms to evolve intelligent
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locomotive behaviors that give each embodied atienhighest likelihood of survival,
we chose to utilize NE as a relatively new reindonent learning approach for RNNs that
make use of GAs.

Neuroevolution

In difficult real-world learning tasks such as trotling robots, pursuit & evasion
tasks, or game playing, it is impossible to specdyrect actions for each situation. In a
complex control system, such as those used byrti®@ied agents in this thesis,
specifying the correct outputs for each possibgbeiircombination and state is practically
impossible. In these situations, optimal behamast be learned by the exploration of
different actions, the reinforcement of good dexrisibased upon some feedback from
the system itself and the exploitation of learnedvdedge of the environment. NE
techniques evolve neural networks using the opation process of genetic algorithms,
and allow for the evolution of robust solutiongiifficult real-world learning tasks
without the need to supply additional informatiarfar an external agent to direct the
process. NE is often more robust and less sustepti noisy input than traditional back
propagation training methods due to NEs evolutipmature.

Traditionally, NE begins with a fixed topology ftite evolving neural networks.
A fully connected network topology with a hiddenda of neurons is typically used.
Once the topology is chosen, evolution searchesdheection weights of this network
by allowing the reproduction of several networkd amaluating their performance. A

Genetic Algorithm controls the evolution and repreiibn of the neural networks.
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The exploration of the weight space is done viactiossover of network weight vectors
and through mutation of single networks' weightsui®&y and Mikkulainen, 2002).
Only allowing the best performing networks to regiroe reinforces robust solutions.

In this thesis, NE makes use of the powerful of@ation capabilities of the GA
by encoding the weights of the RNN into a chromaaloiormat compatible with the GA.
The GA is run for several generations until a sesfi¢ solution (RNN weight structure)
is evolved. Though this method is very computatignintensive, it holds a distinct
advantage over the traditional learning method&MNNs: unsupervised reinforcement
learning. In other words, NE does not requireuse of training data or an external agent
to direct the learning process and will eventuplyduce an optimal (or near optimal)
solution after several generations with the ontjureement being a well-defined fitness
function. Furthermore, NE is more biologically péible than the BPTT method of
learning. The user may sacrifice some controleeisfly with a procedurally defined
fitness function; however, the potential gain inoaoating the learning process and the
creation of a complex control system compensatethéloss (Sims, 1994).

Standard NE is highly effective in reinforcemegdrhing tasks such as robotic
control; however, a significant advantage can beeghby evolving neural network
topologies along with the weights. Algorithms teapand upon the basic principles of
NE include SANE (Moriarty, 1997) which evolves tiopology of the network, as well
as the weights, and NEAT (Stanley and Mikkulair@902) which starts with a minimal
network and "complexifies" the network as necessagvolve an optimal and efficient
solution to the problem. Both the above methodsemse the efficiency of the NE
system, and make it possible to evolve ever inanghscomplex solutions over time.
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The NEAT algorithm can further make use of compegito-evolution. In competitive
co-evolution, the goal is to establish an "arm®'tdleat will lead to increasingly
sophisticated strategies (Stanley and Mikkulainen).

Environmental Complexity

Even disregarding issues of biological plausibjlttye coupling of embodied
agents with the environment brings with it a majye@thodological problem: results
reporting behaviors of different organisms in diffiet environments are incommensurate.
It is, therefore, difficult to assess whether apapntly superior behavior is the
consequence of more sophisticated adaptive tecesiqu is due to the relative
complexity of the environments. There exists agdesire to be able to define artificial
environments of controlled complexity, within whialwide range of A-Life techniques
may be directly compared (Menczer, 1998).

Godfrey-Smith attempts to characterize the gersennditions on complexity of
environments by the number of states they presehieir organisms, the frequency of
their change, and their overall heterogeneity (BadBEmith, 1996). Several other
researchers propose food density as another garmrdition of environmental
complexity; however, we define the only genericditon of environmental complexity
to be the accurate modeling of natural physicsthénnatural world, this is one of the few
conditions we cannot change and this conditionalsrsufficient to allow the emergence
of complex behaviors. Furthermore, as statederadur long-term goal is the transfer of
evolved intelligent behaviors into physical mani&i®ns of the embodied agents within

the natural world.
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The accurate modeling of the physics of the natuoald allow for commensurate
comparisons to be made between the physical ahdamanifestations of the embodied
agents.

Evolutionary Computation and Emergence

Evolutionary computation (E.C.) is an umbrellaxiehat encompasses several
computational techniques that are to some degrsedhgon the evolution of biological
life in the natural world. The term is relativelgw and represents an effort to bring
together researchers who have been working inlgloskated fields, yet following
different paradigms. EC involves research intoegjeralgorithms, evolutionary
strategies, evolutionary programming, and artifitfa. EC struggles with the same
ideas as Atrtificial Life: determining how to repent "solutions” to an environment,
determining which "solutions" are able to reproduetermining how the reproduction
mechanisms work and determining which life formsudt die. EC also concerns itself
with the global behaviors that emerge from simplé cal interactions.

The relevance of EC to this thesis is demonstratéide emergent properties of
many of the computational techniques that we @iliZhis thesis does not directly make
use of the emergent properties of EC; howevernhgleying a Genetic Algorithm, we
can take advantage of past behaviors and makef asgmbal knowledge" when the
population reproduce and indirectly take advantégbe emergent properties of EC.
One possibility is to allow the population of indluals themselves to interact with one
another and develop a group mentality or behawgith the entire population
cooperatively (or competitively) working on a sadut to a problem, novel global
solutions may emerge.
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FIGURE 7. Evolving a population of emiaodied agents

Parallel Processing and Fault Tolerance

Parallel processing is the use of multiple proogsslements to execute different
parts of the same program simultaneously. The waah of parallel processing is to
reduce the overall time required to complete a agatpnal task. In theory, a thousand
simple processing elements working in unison toviaedsame goal would be equivalent
to one processing element that is a thousand tinoee powerful than the single simple
processing element. Biological neural networks enase of parallelism by their
implementation of millions or billions of simple m®ns (processing elements) and their
vast network of connections working together to paee an extreme parallel processing
system. Both GAs and ANNSs are inherently paralgbrithms; however, their
implementation is often on serial computationalides such as a uniprocessor computer,
thus the speed advantages of the implicitly pdrattecture of these algorithms are often
lost on such devices. The genetic algorithm igiiehtly parallel with each individual
population member having few if any dependenciesiupe other individuals. There is
no question that a biological neural network, withir densely interconnected parallel

structure is a parallel information-processing deviThe artificial neural network, an
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information-processing paradigm inspired by thddgaal neural network is also an
inherently parallel structure. Though both the &#&l ANN are based on parallel
structures or algorithms, they may not be idealiyesl for implementation on today's
parallel machines. Communication delays and symshation issues within their
structures can hinder the implementation of thégerithms onto a parallel machine.
Much research has been done on the implementattiooth GAs and ANNs on
parallel computers. Issues such as synchronizailobal communication, and the
amount of implicit parallelism of the fitness fuizct all need to be considered when
implementing a genetic algorithm or a neural nelwar a parallel machine.

The Embodied Agent

An agent, in the context of computer science,ofeders to a piece of software
that can perform its tasks in an intelligent mann&n agent that exists in a virtual world,
like their biological counterparts, requires arenfdice (or body) to interface with the
environment. Agents that exist within a virtualndoare often known as animats or
virtual creatures. An embodied agent is an autanmliving creature, subject to the
constraints of its environment. The consequengpvarig a software agent a body to
control subjects the agent to the forces of itg@mmed environment. The impetus for
creating embodied agents is realism and modulaAtyypical embodied agent with 2
appendages composed of several rigid bodied imeagrmied via multiple hinge joints is

shown in figure 8.
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FIGURE 8. An embodied agent

The embodied agent can model a biological creatitreits sensors and outputs
(i.e., muscle output). Vision and movement arezimeost common attributes an
embodied agent can posses. The embodied agdhis axperiment were endowed with
sensors to provide the ANN with input from the eamiment, and effectors that allow the
ANN to control the movement of the agent.

Artificial Life and Virtual Creatures

There has been little work in the field of A-Lifevolving simulations that utilize
a physically accurate environment that models a&tuorld rules of physics. Many
recent studies in artificial life make use of agiifired environment to evaluate the
learning process within the embodied agent; howekiere have been a few studies
aimed at accurately recreating a physically pldassbvironment.

The most complex and realistic simulation to deds performed by Karl Sims
and presented at Siggraph in 1994. Sims's Viuehtures described a novel system for
creating virtual creatures that move and behawesimulated 3-dimensional physical

world (Sims, 1994). Sims's GA evolved both the wreamorphology and control system
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simultaneously to perform a variety of tasks raggnom walking to competing with
other virtual creatures for control of a block. ellbrains of Sims virtual creatures
resembled that of a data flow computer program rtitae a neural network, and were
able to process sensory information from the emvirent and produce motor output.
Sims ran his simulations on a Connection Machimpestomputer because of the high

computational complexity of his simulations.

FIGURE 9. Craig Reynolds boids simulation (Reynplf337)

One of the first 3-dimensional computer simulasiof embodied agents was
demonstrated by Craig Reynolds who simulated tlgeegte motion of a flock of birds
within a 3-dimensional environment (Reynolds, 198¥he simulation was an elaborate
particle system, with each bird represented byragwith the aggregate motion of the
simulated flock controlled by a distributed behaalonodel. The flocking behaviorisms
demonstrated by the Boids were similar to thodarafs in the natural environment.

The Boids made use of 3 basic rules: (1) Steavtad getting close to
neighbors, (2) Steer to keep on the average headithg flock, (3) Steer to stay near the
average position of the neighbor. The emergeriajlbehavior that arose from the
simple interactions was astonishing at the timbe Boids were able to navigate, as a

flock, across an area of columns.
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They were able to flow around the columns, and reethin a group formation by

speeding up or slowing down.
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CHAPTER 3

DESIGN APPROACH AND IMPLEMENTATION SPECIFIC DETAILS

Evolutionary computation methods are borrowed fratural living systems.
Because of our desire to evolve intelligent beh@vior embodied agents in a life-like
environment, we employ several different Evolutignalgorithms. As stated earlier, the
goal of this thesis is to develop a framework feoleing life like and optimal behaviors
in virtual creatures that can be easily transfetoaal world machines. This framework
consists of the evolutionary algorithms employedvnolving the brain of each embodied
agent, the virtual environment the agents "livethim, and the morphology of the agents
themselves. In this chapter we discuss the dethilse environment, the agent
morphologies, and the union between the GA and RNN.

Virtual Environment and Physics Engine

Environmental complexity plays a large role in suecessful evolution of
complex biological organisms. In an effort to allor commensurate comparisons
between physical agents of the natural world aedatients of the virtual environment,
an accurate physics model is employed. The vidogironment utilizes a sophisticated
physics engine to accurately simulate rigid bodyatyics, joints, contacts/collisions,
friction, inertia and gravity by simulating naturabrld physics. Due to the relatively
low velocities expected, and to reduce the commurtak complexity of the simulation,

the physics engine uses Newton's model ratherEn@stein's equations. By employing
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an environment that accurately models real worlgss, we can ensure that the
embodied agents that exist within the virtual emwinent are unable to generate any
motions or forces that would otherwise be irrepldie in our natural environment.

The embodied agents that live within this environtrege composed of a series
of rigid bodies interconnected via joints. The @ilog engine acts directly upon the rigid
bodies of the agents; therefore, the agents theesale subject to the rules of physics
that govern the environment. Each rigid body carfusther constrained by the use of a
joint. A joint can connect 2 or more rigid bodasd can be permanent (such as a hinge
or slider joint), or can be temporary and a restithe collision of 2 rigid bodies (such as
a contact joint). When an embodied agent's apmggndallides with the ground plane, a
temporary contact joint is created.

Gravity in the virtual world is set at approximatél.8 m/$, to provide a close
approximation of real world gravitational forcessati level. Ground friction is necessary
for locomotion, and is modeled in the temporarytaohjoint created during a collision.
Friction within the agent's joints is also modelgtthe use of a small negative torque
within the joint itself. Other forces such as wiedistance are so minor that we choose
not to simulate them in order to reduce the contpmrtal complexity of the system. The
landscape of the virtual environment is complebayren; an infinite horizontal place
with a coefficient of friction similar to that osphalt acts as the ground upon which the

embodied agents can use their appendages to gef@es.
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FIGURE 10. System flow diagram

As stated earlier, the physics engine interactscti with all the rigid bodies
within the virtual environment; therefore, the erdigal agents themselves are subject to
the constraints imposed by the physics engine. syetem flow diagram is shown in
figure 10, and represents an overview of how therenment interacts with the

embodied agents to allow for locomotive strategiesh as walking, to develop. The
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system flow diagram can be broken down into sixinti$ steps: (1) Creation of a new
population of embodied agents whose actions areehiately constrained by the physics
engine. (2) Agents perform tasks dictated by tieel@fined fitness function. In this case,
the agents employ a variety of input sensors tbagagnvironmental data, which are
processed by the RNN to generate effector outputich physically move the agent's
joints and limbs, thus generating motion. (3) Qklte the Fitness scores based upon
how well the agents were able to perform theirdaskstep 2. Each individual is given a
fitness score proportional to the distance travaledg a predetermined axis and then the
entire population is linearly fitness scaled tousgllarge variations in fithess. (4) Select
individuals for reproduction with the chances oiflgeselected being proportional to the
fitness score. This method is also known as rteuleheel selection. (5) Crossover
selected individuals from step 4 by performing shrgle point crossover operator as
shown in figure 3. The probability of being selémtcrossover Pc is 80% as defined in
table 2. (6) Mutate selected individuals from stdpy employing a Gaussian mutation
operator with the probability of mutating any givgene Pm at 0.10%, generate new
population and repeat at step 2. The symbiotaticiship between the RNN and the GA
can be clearly seen in the system flow diagranm@$3A works to optimize the RNN.

A population of 80 embodied agents begins eachrgéag at their initial
position of (0,y) on the horizontal ground plane as shown in figlke The population is
given a fixed amount of time to move as far aldmgx-axis in the negative direction as
possible. After a fixed amount of time, each indizal embodied agent is evaluated and

assigned a fitness value corresponding to how itvedirformed the task.
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Agents that travel longer distances are assignggloptionately higher fithess scores than

agents that are unsuccessful at traveling.

Embodied Agents (80)
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FIGURE 11. Initial starting conditions for each geation
Rigid Bodies

A rigid body has various properties from the pahview of the simulation.
Four properties of rigid bodies that change withetiare: (1) Position vector (x,y,z) of
the body's point of reference corresponding todidsocenter of mass, (2) linear velocity
vector of the point of reference (vx,vy,vz), (3)emtation of a body, represented by a
guaternion (gs,gx,qy,qz) or a 3x3 rotation matrig §4) angular velocity vector
(wx,wy,wz) that describes how orientation changéh vespect to time. Rigid body
properties that remain constant over time includg:Mass of the body, (2) position of
the center of mass and (3) inertia matrix descgiliow the body's mass is distributed
around the center of mass (Smith, 2002). Thegeepties are used internally within the
physics engine to calculate the forces and torthegsaffect the rigid bodies. The

calculations are described in detail later in thiapter.
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FIGURE 12. Representation of rigid bodies

Conceptually, each body has an x-y-z coordinate& embedded in it that moves
and rotates with the body, with the origin of tbaordinate frame at the body's point of
reference as shown in figure 12. A rigid body barrepresented, for collision detection
purposes, by a rectangular box-like structure oylimder.
Hinge Joint

The hinge joint, as shown in figure 13, constrairsmotion of the two attached
rigid bodies to rotate about the axis. The hirayetjis the simplest joint with only 2
sensors: (1) current hinge angle and (2) currengehangle rate. Léti(t) be the current
angle between 2 bodies at time t, then the hingéeaater(t) is defined as the time

derivative of the hinge angle:
d
r(t) =—~n(t
(t) o (t)

The value returned for the hinge angle will be lestw—pi and pi. The hinge joint has 2
sensors that can provide the current angle andamngelocity to the embodied agent.

The joint also has 1 effector that accepts theréésielocity as its input.
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FIGURE 13. Hinge joint
Slider Joint

The slider joint, as shown in figure 14, constsdime motion of the attached
bodies to move along the axis. The slider joirgristher simple joint that allows for only
1 degree of freedom. The 2 sensors of the slalet provide the following information:
(1) the slider joint's current position and (2) taee of position change. Ls(t) be the
current slider position between 2 bodies at tintbdn the slider position rapét) is

defined as the time derivative of the slider positi
d
t) =—s(t
p(t) o (t)

The current position is returned as a number betwdeand 1, with O representing the
midpoint between the 2 joint extremes. The slidesgnsors provide linear position and
linear velocity information to the RNN of the emlbedi agent. The slider has 1 effector

that can accept the desired velocity as its input.
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FIGURE 14. Slider joint

Ball and Socket Joint

The ball and socket joint, as shown in figurei$3he most complex joint
currently used by the embodied agents. The bdllsacket joint allows for 3 degrees of
freedom about the 3 axes. The ball and socket pwovides 2 feedback sensors for each
axis. The 2 sensors provide the following dath): b@ll and socket angle for the given

axis and (2) ball and socket angle rate for themiaxis.

Body 1 Body 2

Anchor

FIGURE 15. Ball and socket joint
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The angle rate for an axis is calculated by takimegderivative with respect to
time of the current angle on the particular axisie to the 3 degrees of freedom, the 2
sensors can provide up to 6 pieces of informatainé RNN.
Contact Joints

The contact joint prevents body 1 and body 2 frataripenetrating at the contact
point. It does this by only allowing the bodieshve an "outgoing" velocity in the
direction of the contact normal. Contact joints gypically created and deleted in
response to collision detection. Contact jointsusate friction at the contact by applying

forces in the 2 friction directions that are pewtienlar to the normal (Smith, 2002).

Normal
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FIGURE 16. Contact joint
Sensory Input

The embodied agents employ a host of sensordlextdata from the
environment and feed the data to the RNN. Talerionstrates the variety of sensors
employed in this simulation as well as the intefRBIN representation of the sensory

data. The table also demonstrates the rangewévéhat the sensors are able to detect.
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The sensors update their output values at evenylatian time-step and are perfect in the
sense that they do not generate false or errorgaias

Four of the 8 sensors perform a linear scalingpeir output before presenting it
to the RNN. The reason for the linear scalinghefsensory data is to keep the data
within the range of the RNNs squashing/activatiomction. The 8 sensors output a
range of values based upon their inputs excegh®touch sensor, which can only

output 2 discrete values. The touch sensor is fedddter a momentary toggle switch,

with 2 positions: on and off.

Direction Sensor
(1)

Touch Sensors Hinge Angle Sensors/
(2) Angular Velocity Sensors

(4)

FIGURE 17. Sensor arrangement

The arrangement of the sensors is shown in figjdreln this figure, the
embodied agent has 7 sensors located throughdaddis The touch sensors indicate
when the frontal appendages make contact withithkengl plane, and the angle sensors
measure the angle the front appendages make sjpectto the agents body. The hinge
joints also contain angular velocity sensors teatiback the rate of angular change to the

RNN. Finally, a direction sensor provides the ANith a sort of compass.
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The other morphologies have a similar sensor aenauegt, with the only difference
being the type or number of sensors.

TABLE 1. RNN Representation of Sensory Data

Sensor Type |Output Range RNN Representation
Hinge [-pi,pi] [-3.1416,3.1416]
Slider [-1,1] [-1,1]
Ball/Socket [-pi,pi] [-3.1416,3.1416]
Linear Velocity |[-300,300] cm/sec [-1,1]
Angular Velocity |[-100,100] rad/sec [-1,1]
Height [0,2000] cm [0,1]
Direction [0,2pi] rad [-1,1]
Touch on / off -1,1

Effector Outputs and Anqular Dynamics

Every joint has a motor associated with it knowraa effector. The effector
applies torque to a joints degree(s) of freedomgetat to pivot or slide at the desired
speed. Effectors have limits to the maximum amafindrque that can be generated, and
will be unable to apply more than a given maximamté or torque to a joint. The
embodied agents effectors allow them to controrétetive angular or linear velocities
of two bodies connected via a joint, thus enabiivem to control their appendages and
produce motion.

TABLE 2. RNN Representation of Effector Data

Effector/Joint [Max Force/Torque Input Range RNN Representation
Hinge 800 gm-cm [-10,10] rad/sec [-1,1]
Slider 1200 gm-cm [-100,100] cm/sec [-1,1]

Ball/Socket 600 gm-cm [-10,10] rad/sec [-1,1]

The RNN representation of effector data is shamtable 2. Due to the
activation function chosen for the output layetled RNN, the RNN can only effectively
output values within the range of —1 to 1. Thes#puats are fed directly to the inputs of
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the effectors. The effector takes the input valne converts it into a desired speed by
linearly scaling the effectors inputs to the inparige as shown in table 2. The maximum
force/torque is predetermined for each type ofatfie and is designed to be similar to
several common types of DC electric motors. Usiegequations below, the physics
engine can quickly determine the acceleration egpeed by the bodies attached to the

joint based upon the desired speed set by the RNN.

S

Torgue

Force

T=Fxrxsin@&

FIGURE 18. Effector model for hinge and socket §®in

Effectors employ a simple model of real life matas shown in figure 18, with
two parameters: (1) the desired speed and (2nthemum force that is available to
reach the desired speed. Effectors can also laetaseodel geared motors (motors
attached to gearboxes). Such devices are oftenotled by setting the desired speed,
and can only generate a maximum amount of powacheve that speed (Smith, 2002).
By employing the geared model, we can effectivejuce the number of outputs

required by the RNN to just one per effector: dlesired velocity.
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Slider joints are simply modeled by employing Nemgosecond law to calculate

ForceF:
Force: F=mla

Wherem represents the mass of the rigid body amglthe acceleration. The hinge and
socket joints are modeled utilizing Newton's seclawdfor rotation to come up with the
basic torque equations as a function of force,@ragid radius is defined as:

Torque: T =FI[r[sin®
wherer is torquey represents the radius,is the force, an@ is the angle between the
line made by r and F. The basic torque equatiasésl to calculate how much torque the
effector will apply at either a hinge or ball aratket joint.

The other rotational force the physics engine noaasider is the moment of
inertia. The moment of inertia of a rigid bodyts measure of how difficult it is to start
rotating and it depends upon where the axis otimstas (either a joint or the center of
gravity for a freely rotating body) and the masshaf object. The physics engine
computes the moment of inertiaby first breaking up the rigid body into sevesaiall
pieces, then multiplying the mass of each piecthbysquare of the distance from its axis

of rotationr, and adding all these products up:

Moment of Inertia: | = Zmﬁiz

The rigid bodies of this simulation have a homogendistribution of mass about the

body's center of mass.
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ANN Implementation Details

The recurrent artificial neural network (RNN) isuly connected multi-layer
neural network also known as an EIman Network. fbpelogy of the network is made
up of 4 layers: (1) an input layer, (2) a hiddayer, (3) an output layer and (4) a context
layer. The number of neurons contained in thetiapad output layer differ per
morphology; however, the hidden layer consistsativieen 6 to 10 neurons that are fully
connected to both the inputs and the outputs. hEurtore, the hidden layer has 6 or
more layers of recurrence (context layers) depandpon the morphology of the
embodied agent. Table 3 describes the specifieadi RNN for a particular
morphology with the chromosome size representiegitimber of inter-neuron
connections within the RNN. Each inter-neuron aation within the RNN is assigned a
weight.

TABLE 3. RNN Implementation Details

Agent [InputsHidden|Outputs| Context Layers| Neurons | Chrom. Size Name
1 5 6 2 6 44 266 Crawler
2 9 8 6 8 78 646 Long Arms
3 13 8 4 8 76 660 Hopper
4 10 10 6 8 96 976 Runner

The RNN is a feed forward network employing hiddeits and context
(recurrent) units, which develop internal repreagans for the input patterns and recode
those patterns in a way that enables the netwgpkaduce the correct output for a given
input. The context units remember the previousrirdl state and provide the embodied
agent with a short-term memory. The internal repn¢gations that develop are sensitive
to temporal context; the effect of time is impligitthese internal states. They represent a

memory that is highly task and stimulus dependg&lmén, 1990). This short-term
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memory is necessary for the embodied agent to dpyetomotive behaviors that can

involve repetitive motor strategies (i.e., walking)

QOutpurt Layer

Hidden Layer ©
Input Layer Copy/Context
Layer(s)

FIGURE 19. The structure of a generalized recunnentral network

The activation at timg for an arbitrary unit in a recurrent neural netiis
defined as:

y; (t) = f; (net; (t —1))

At each time step, the activation propagates faavtlarough 1 layer of connections only,
wherenet represents some nonlinear activation functionceOmcertain level of
activation is present in the network, it will conie to flow around the units, even in the
absence of new input. The activations in the mda@ts are just the activations at time
t-1. A generalization of this technique is used is thesis: copy the input and hidden
unit activations for a number of previous time stefphe more context (copy) layers that
are maintained, the more history we are expli¢itttuding in the activation
computations. This approach takes into considaratot just the most recent inputs, but
also all the inputs seen so far by the networlgufg 19 and figure 20, illustrates this

approach.
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FIGURE 20. Hidden unit outputs are fed back inte itiput

The activation function of the RNN is the biposgmoid function. The bipolar
sigmoid was chosen over the standard sigmoid dtleetbipolar nature of the sensory
input data and effector outputs. By employing@olar sigmoid activation function, the
RNN is able to effectively process the bipolar sgpslata and generate bipolar output
necessary for the correct operation of the emboalgehts effectors. Let be the weight
matrix with n rows and n+m columns, wheves the weight to unit ib is the bias, and
is the input into the uniti. The activation fach unit can now be calculated, by first

computing the weighted sum of their inputs:

net, (t) =b+ wz(t)

Units then compute the nonlinear bipolar sigmoiaction of their inputs:

p— 2 p—
Nt =17 expothet, (t))
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The bipolar sigmoid function is plotted in figur&.2The derivative of the bipolar

sigmoid function is:

Y (t+1) =%[1+ Y, (t+ D1y, (t +1)]

The hidden, context, and output layers of the RINNse the same bipolar sigmoid
activation function. The paramet@idetermines the steepness of the bipolar sigmoid
function and in this thesis was fixedat 2. The external input at timenay still
influence the output of any unit until tinten, wheren represents the number of context
units. The output from the output layer is fecedity into the effectors of the embodied

agent.

|

\

FIGURE 21. Plot of the bipolar sigmoid function
The bipolar sigmoid is closely related to the mpodic tangent function, which is
often used as an activation function when the ddgiange of output values is between —

1 and 1 (Faucett, 1994). The hyperbolic tangent is

h(x) = exp(x) —expEx)
exp(x) +exp(x)

This thesis utilizes the bipolar sigmoid as thivation function utilized in both

the hidden and output neuron layers of the RNN.
49



Input Layer Hidden Layers Output Layer

Hidden and : @—‘ Effector #1
Context Layers
/®—— Effector #N

Sensor#1 —e

FIGURE 22. Embodied agent RNN control system

Sensory input is first fed into the RNN, as ilhaséd in figure 22. The RNN then
calculates the activations based upon the senspuys and the context layers. The
values produced at the output layer are fed dirétb the embodied agents effectors.
The agent's effectors in turn control its appendatieis producing movement. For every

time step in the simulation, this process is regat

GA Implementation Details

The purpose of the genetic algorithm is to optertze weights of the neural
network to evolve efficient locomotive behaviors foe embodied agent. A symbiotic
relationship exists between the GA and the RNNe G optimizes the RNN, and the
RNN produces agent behavior that is then scoredeahtack into the GA. At startup,
the population's chromosomes are initialized taloam values. The chromosome length
varies per embodied agent morphology, with 1 geateRNN weight. The number of
connections, in table 1, represents the numbeenégin the chromosome; a floating-
point number represents each gene. To help akeigroblem of premature

convergence, linear fithess scaling is utilizethis thesis. The GA of this thesis makes
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use of the standard single-point crossover opeestalescribed by Goldberg (1986).
After the crossover operation, the gene has a pilifysof being mutated. The mutation
operator utilizes a Gaussian perturbation rathem tnrandom mutation. The Box-
Mueller transform is employed to generate a peddnveight with a mean of the original
weight and a standard deviation of 0.25. By pértg the weights rather than randomly
selecting values for the mutated weights providesfgradual change. Table 4 presents
the static parameters used for the GA.

TABLE 4. Genetic Algorithm Parameters

GA Parameters

Population Size g0
Crossover Rate 80.00%
Mutation Rate 0.10%0
Fitness Scaling Linegr
Mult. Factor (a) D
Penalty Factor (b) 4

The GA uses a predefined function to evaluatdithess of each individual
member of the population. The purpose of the $grfeinction is to accurately evaluate
the genetic health or fithess of a particular imdlial, and thereby either increase or
decrease the probability of that particular indiaatireproducing and generating
offspring. The fitness function determines howratividual is rated in terms of genetic
fitness, and indirectly influences the behaviorshef embodied agent. The fitness
function was carefully chosen such that it woultbtéo award efficient locomotive
behaviors and penalize wasted effort and is baped the distance traveled by the
embodied agent within a certain period of timehigher fitness score is awarded to
embodied agents that are able to travel largerdistain a given amount of time;

traveling off course is penalized via a reductionhe fithess score.
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Let xo andyp be the initial starting position of the embodiggtiat, a be the multiplication
factor for the distance traveled afidbe the penalty factor, then the agents sEaee
defined as:

F() =a(=x=x%)=(y=Yo)”

The agent's fitness scafétness is defined as:

. F(x) F(x)>0
Fltn&s:{

0 F(x)<0
The distance traveled along the x-axis is represebyx-xo, while the distance traveled
along the y-axis (representing an agent travelffigaurse) is determined byyo. The
fitness function positively reinforces agents whama able to travel great distances along
the x-axis while maintaining course. The multigtion factora = 9 and the penalty

factor = 4 are used in the fitness calculations in tleegeriments.

Chromosons

1 2 3 4 5 6 7 8 9 10
o.z1o.4)-.3)0.7)-.810.0|-.6|0.5]10.2]0.9

Hidden

Outputs

FIGURE 23. Chromosome format
The representation of the chromosome of an emtdaient is shown via a
simple example in figure 23. In this example,r@ode ANN contains ten inter-neuron

connections. Every gene in the chromosome repiesee inter-neuron connection
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weight. Each inter-neuron connection tying twonoas together must have a connection
weight associated with it. The weight structureejgresented as a chromosome that is
optimized by the GA to produce intelligent behasiuvia selection. The selection
mechanism used to determine which of the indivislwall mate is based upon the
roulette wheel algorithm modified with a lineanfiiss scaling mechanism as described
by Goldberg (1986).

Embodied Agent Morphology and Details

The morphology of the embodied agent is complgtedgetermined and is
designed to elicit a variety of different locomaikehaviors and test the generalization
abilities of our framework. Four different morpbgles are introduced into the
simulation; each morphology represents an enta#fgrent species of embodied agents
with its own unique genotype and is composed afralyer of joints, joint types, sensor
inputs, effector outputs and rigid bodies as showmable 3.

Sensors allow the intake of data from the enviramna@d the effectors act as
motors attached to the appendages and allow thediathagent to physically interact
with the environment. Each agent is composedtoérarchy of 3-dimensional rigid
body parts that are connected via joints. As dlesdrearlier, each joint has effectors
(muscles) between them that exert a pulling or pgsforce in any of the degrees of
freedom (up to 3 DOF for a ball and socket joimt)l @an model the flexion and
extension forces that pairs of biological muscbesreor the rotational torque of a geared
motor.

The environmental data collected by the sensaepisesented as a floating-point
number, which is then fed into the RNN. The usa bfpolar sigmoid as the activation
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function of the RNN allows the network to accepaage of input values that can be both
negative and positive valued numbers. The bipgmoid activation function also
allows for the network to produce an output conipatwith the embodied agent's
effectors, which also require data to be presemtedbipolar format. The continual cycle

of input and output to and from the RNN is the naatbm that can produce intelligent

behaviors.
Speed [-1,1)
Speed [-1,1)
{ Effedtors } {. Effe¢tors
Body [ g JRSCR N
; Y
Genetic algorithm appendage 1 sppendage 2 :> MOWVEMENT
FRecurrent Neural e A "rs, P
Hatwork { Henscrs| } { Hensors
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Touch (on/foff)
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FIGURE 24. Embodied agent flowchart

The embodied agent flowchart as shown in figured2écribes how an embodied
agent can evolve intelligent locomotive behaviofsiough the flowchart describes the
Crawler morphology, it remains applicable to a# thorphologies, as the only difference
from the standpoint of the system is the numbendits and outputs. The flowchart can

be broken down into 4 steps: (1) the agent reseavwironmental feedback from the
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built in array of sensors attached to its appensla@} the RNN processes the incoming
sensory data, (3) the RNN sends output signalsa@ffectors and (4) the effectors
control the movement of the appendages and therarep step 1. The 4 steps are
continuously repeated to generate movement. Thetste of the RNN determines the
types of movement behaviors demonstrated by thediath agent. Upon completion of
a generation, the RNN is updated and optimizedhbyGA and the process begins anew.

TABLE 5. Embodied Agent Morphologies

Agent Joints Bodies | Appendages| Joint Type | Sensors | Effectors
Crawler 2 3 2 Hinge 5 2
Long Arms 6 7 2 Hinde 9 6
Hopper 4 5 2 Hinge/Slider 13 4
Runner 2 3 2 Ball & Socket 10 6

The purpose of introducing multiple morphologig$wofold: (1) test the
generalization capabilities of the NE processsrahility to evolve intelligent solutions
of locomotion when presented with a variety of nialpgies, and (2) prove the system
is capable of modeling a variety of joints and ctiiwes that exist within the natural
world. As stated earlier, the accurate modelingadtiral world machines can
conceivably allow for transplantation of the evalveeural structures from embodied
agents of the simulated environment to the maclohése natural environment. The

composition of the agent's morphologies is detaiadble 5.
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Species #1 Simple Crawler Morphology

FIGURE 25. Embodied agent species #1 (simple crawle

The first embodied agent design we experimentel ivia simple box like
creature consisting of 3 interconnected rigid bsdige shown in figure 25. Two
appendages protrude from the front of the torsoamadttached to the torso via hinge
joints and allow for 1 degree of freedom aboutdbents y-axis. Feedback to the neural
network is provided via a set of 5 inputs sensoas feedback the angular velocity of the
2 hinge joints, touch sensors on each appendade dimection sensor acting as a sort of
compass. The RNN has 2 outputs that control tigalanvelocity of the hinge motors
(muscles). The creature morphology was designédtive thought the creature would

use the 2 front appendages to drag or pull iteelfdrd.
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Species #2 Long Arm Morphology

FIGURIﬁEmbodied agent species #2 (Iong arms)

The morphology of this embodied agent resembleasathiine Box creature;
however, instead of 2 simple appendages protrudamy the front of the torso, this
creature has 2 complex "arm-like" appendages piistgufrom the top of its torso as
shown in figure 26. A total of 7 rigid bodies makethe structure of this agent. Each
complex "arm-like" appendage is composed of 3 rigidies interconnected with hinge
joints and connected to the torso with a hingetjoirhe "hands" are shaped like a paddle
to provide greater contact area with the ground.

The RNN of this embodied agent processes nine sgnsors feeding it a
continuous stream of data collected from the emwitent. The information processed
includes angular velocity of all 6 hinge jointsytt sensor feedback on each "hand," and
a compass like direction sensor. The RNN has socaéted 6 outputs that are used to
control the muscles of each joint. The outputgigeine the angular velocity that the
muscles will attempt to maintain at any given momertime. This morphology was

introduced to determine if the RNN framework wobklable to cope with a more
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complex embodied agent and learn how to effectivedyipulate complex appendages
composed of multiple rigid bodies and joints.

Species #3 Hopper Morphology

FIGURE 27. Embodied agent species #3 (hopper)

The third species of embodied agent introducesi@gphwology that is designed to
elicit a method of locomotion that involves jumpiaigd is composed of 5 rigid bodies
interconnected via hinge and slider joints as shimwigure 27. This is a virtual creature
that has a "box-like" torso with 2 legs that attéxlthe underside of the upper torso via
hinge joints. Each "leg" is composed of 2 rigidii®s interconnected via a slider joint.
The slider joint gives the legs the ability to ddycextend. The only conceivable means
of locomotion this embodied agent can perform wdwdde to involve some type of
jumping behavior. This morphology was introduced¢e how well the framework
copes with a large fitness landscape with multgaeks.

This embodied agent has 13 input sensors providiiogmation to its RNN.
These sensors provide the following environmeraigd angular velocity of each hinge

joint, extension velocity of each slider joint,diar velocity of the torso with respect to
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the environment, angular position of each hingetjdinear extension distance of each
"leg", angular position of the torso with respexthe horizontal ground plane, contact
sensors for each foot, and height of the torso alte® ground plane. The 4 outputs from
the RNN that are fed to the effectors include:oegy of the "leg" extensions, and
angular velocity of the 2 hip joints.

Species #4 Runner Morphology

FIGURE 28. Embodied agent morphology #4 (runner)

The fourth embedded agent morphology introduassnacomplex joint type with
increased degrees of freedom and is composedigid3iodies interconnected with ball
and socket joints. The virtual creature has 2 “hkel' appendages protruding from
either side of the torso as shown in figure 28e Zhappendages are connected to the
torso via ball and socket joints that provide 3réeg of freedom for each "arm". Due to
the 2 additional degrees of freedom vs. the hing#,jthis agent's RNN is required to
process significantly more information than thevpyas creatures utilizing hinge joints
with only 1 degree of freedom. The agent posseE3@sput sensors that feed the

following data into the RNN: angular velocity feach degree of freedom for both
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"arms" (6 inputs), contact sensors at the tip chesrm (2 inputs), contact sensor at the
underside of the torso (1 input), and a directiemssr (1 input). The 6 outputs from the
ANN provide velocity information, for each axis, ttee effectors controlling the 2 "arm-

like" appendages.
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CHAPTER 4

EXPERIMENTS AND RESULTS

General Results From the Evolution of Locomotivéh&egors

The problem of evolving intelligent locomotiveatgies for an embodied agent
can be addressed using the techniques of evolwi@omputation. In this particular
problem with a Newtonian physics based environmgenstraining the movement and
actions of the embodied agents, the NE paradigfomeed admirably in its ability to
evolve efficient locomotive strategies within thenetraints of the system. The most
important aspect of the NE techniques is its aghibtlearn without an external influence
directing the process. NE exploits the ANN forl@arning capacity and uses the GA to
obviate the need for the traditional ANN learnitigategies, such as BPTT, that require
the use of training data and external direction.

The locomotive strategies evolved are unique é@hespecies (morphology), and
demonstrates behaviors that are generally smdattl,&nd quite like-like. Furthermore,
the Hopper species developed a method of locomatampletely unforeseen in its initial
design. The evolution of intelligent behaviors wcdue to the fitness function of the GA
optimizing the recurrent ANN of the embodied ageng¢volve strategies that tend to
receive high fitness scores. The fithess scom@®sent the total distance traveled in feet,
minus a penalty for traveling off course, in thadiperiod of 7.5 seconds. The fitness

graphs are representative of the average of 5 atioalruns per morphology.
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The evolved move sequences of the four agent mtogies are documented in appendix
A.

Results are summarized in table 3, with the difficparameter representing the
percentage of the simulation time required to es@w intelligent and efficient
locomotive behavior for a particular morphology.e\6hoose to define an intelligent
locomotive behavior as a method of locomotion mglaptimal (or near optimal) use of
the morphology, sensors, and effectors to prodaoseard motion. Intelligent
locomotive behavior involves the embodied agemdpaible to learn enough about its
environment and how to manipulate its physical bimdgenerate efficient movements.
Certain methods of locomotion, such as jumpingyiregmore intelligence and
knowledge of the environment than other simplerhoés of locomotion.

Results for the Embodied Agent Simple Crawler

In this experiment, a population of the speciam{fie Crawler" begins learning
how to move toward a target. Figure 29 shows thgness made during the initial 300
generations. During the first 20 generations atpent quickly begins to learn how to
interact with the environment to generate effeotaputs that tend to produce ever-
higher fitness scores. After 72 generations, tagimum fitness has reached 85% of the
eventual peak fitness achieved within the 300-g®raaT simulation. The simple crawler
morphology achieves an eventual maximum fitnessgatf 30.79.

Initially, the first generations of embodied agepérform entirely random
movements; however, the population quickly leahesdtrategy of timing their arm
movements in alternating sequences, thus resuttinghigher fithess score. Within 20
generations almost the entire population has addpeestrategy of alternating "arm"
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movements to pull the rest of the body forward.e filaximum fitness was recorded at

generation 295 when a fitness score of 30.79 ireaed.
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FIGURE 29. Fitness graph of species #1 (simple lenw

This species, with its smaller brain and fewertegnlayers, quickly learned how
to manipulate its effectors to produce movementrdsults in a high fithess score.
Within 100 generations, the fitness peak has alinesh found using NE techniques and
little improvement is realized in subsequent get@na. The results from the simulation
show that NE is an effective method of training @gienembodied agents to perform tasks
that involve manipulating a simple control systeie simple controls, consisting of
simplistic hinge joints (with their 1 degree ofddom) and effectors contribute to the

quick convergence upon a solution for this morpgglo
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Results for the Embodied Agent Long Arms

The introduction of a more complex morphology wa#veral additional inputs,
outputs, and a larger ANN dramatically increasesfitihess landscape of the NE process.
The control system (ANN) of the embodied agent sssfully learned how to manipulate
the agent's "arms," each constructed of 3 rigiddsodonnected via a total of 6 hinge
joints, to produce intelligent locomotive behaviofghe NE algorithms are once again
able to process and make use of the sensory datiagdack from the joints and input

sensors to produce effective locomotive solutiansvadenced in figure 30.
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FIGURE 30. Fitness graph of species #2 (long arms)

The initial population again consisted of randdfeaor outputs; however, the
population quickly learned to time its "arm" movertgeto generate forward motion
through a variety of techniques. For approximated/first 50 generations, several

somewhat successful locomotive solutions arisee mMkthod of locomotion that initially
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evolved made use of the agent swaying its longheady "arms" to generate inertia to
produce forward motion without the "arms" touchthg ground. This locomotive
behavior is quickly supplanted by individuals thagan to use one "arm" to pull
themselves forward by digging their "hand" into gteund and pulling their torso
forward, and swaying their other "arm" to generaggtia to try and propel the body
forward at the same time; however, a disadvantdgf@omethod of locomotion was the
little directional control it offered, which resatt in many of the agents traveling off
course and being penalized. This semisuccessfaiotive strategy lasted for several
generations until approximately the"5@eneration when several individuals
simultaneously learn how to alternate their "arngvements to allow each "arm" to pull
the torso forward and time their movements suchittefords directional control. This
effective behavior lasts until generation 200, weeme of the agents learn a more
effective behavior of using both arms simultaneptsiquickly pull the torso forward.
By quickly repeating this movement, the agent cquisuce forward motion without the
need for directional control. At generation 221 population reaches 85% of its
maximum fitness during the simulation. The induatlwith the maximum fitness score
of 190.3 is born during the 2@eneration.

Once again, the results from this simulation destrate the effectiveness of NE
in producing intelligent and efficient locomotivehmviors for embodied agents with
complex articulated structures employing severstimiit joints. NE is able to develop a
successful solution that effectively utilizes thersmcomplex articulated "arm-like"

structures to produce a higher fitness score thaisimpler crawler species.
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Furthermore, the results again demonstrate thasMB effective means of evolving
solutions to complex control problems in an enumnemt that models the natural world.

Results for the Embodied Agent Hopper

The third species of embodied agent we examinamasrphology that was
designed to only allow for locomotive strategiesttimvolved jumping. Though this
species may not be the most complex morphologicthliy type of locomotion represents
the most complex movement behavior of all the gsecBuccessful jumping behavior is
very complex; the agent not only needs to estirtreeorrect force vector to generate
the desired results, it also needs to estimattatiging point and be able to manipulate
its effectors in such a way as to have the feposition for a landing. In other words,
the successful agent needs to lean how to perfquat®ens that can calculate the
projectile motion of the body. Once again, usirtg, Me have successfully demonstrated
it is possible to evolve complex locomotive behavioThe embodied agent was able to
successfully learn how to apply forces to its dffexin order to control its trajectory.

Initially, the population of agents all did verggxly due to their random effector
outputs, which would result in the agent eithercily falling to the ground, or jumping
in a random direction and failing to land on tHewt. After about 15 generations, some
of the individuals learned how to control the direc of their initial jumping motion,
thus improving their fitness scores over the age#is jumped in a random direction;
however, after their initial jump, they would stidiil to land on their feet. This behavior
continued until at generation 270, when severaliddals learned how to time their
initial jump so their bodies would do a full rotaiin midair (summersault) and then land
upon their feet to continue the jumping and summdtdehavior. Several of the agents
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were able to perform up to 3 of the summersaultieeges before finally failing to land
on their feet. The fitness score of 119.89 wastbbest obtained within the first 300
generations of evolution. The population produaedndividual that reached the"85
percentile at generation 276.

Due to the complexity of this form of locomotiome decided to allow the
simulation to run for a total of 1,500 generatioN®ry little progress was made from
generation 300 to 1,350; however, as the populaidared its 1,375generation, certain
individuals became good at learning how to corttielr summersaults and performing
numerous summersaults in a row, timing them so wayld perfect the landing with
each summersault. Several individuals from thi$ subsequent generations can
effectively and intelligently perform 10 or morensmnersaults before running out of time.

The results, as graphed in figure 31, demons&rdyee of evolution known as
punctuated equilibrium. In punctuated equilibrithe population undergoes long
periods of stasis, with short and dramatic increasditness between these longer
periods of stasis. The difficulty of evolving iltgent behavior is evidenced by the
volatility in the maximum fitness score, as wellths punctuated equilibrium with fitness
bursts occurring at approximately generation 274bganeration 1,400. The volatility
demonstrated in the maximum fitness graph is likielg to the embodied agents testing
minute variations in effector outputs that resalwide variations in fitness score due to
the precision timing required to performing muldigummersault sequences.

The results from this simulation again demonsttia¢erobustness of solutions that
are evolved using NE. The fitness graph appeadenaonstrate a punctuated
equilibrium that occurred within this populationerhbodied agents, with long periods of
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stasis with abrupt and dramatic increases in fan@$E was only semi successful in
generating a good solution within 300 generatitwasyever, good solutions start to

appear by the 1,480eneration.
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FIGURE 31. Fitness graph for species #3 (hopper)

The likely reason for the extended time periodinegl to evolve a good solution
is the sheer complexity of the task due in path&large fithess landscape. As stated
earlier, a successful embodied agent would reciiteast some knowledge of projectile
motion and be able to determine where it will |afigr each successive jumping motion.
Furthermore, the agent also requires the abilifgyrézisely time the rotation of its body
perfectly to allow the feet to impact upon landieg,that it can immediately perform

another summersault sequence.
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Results for the Embodied Agent Runner

The Runner species illustrates the most sophisticgenome in this experiment,
with a chromosome consisting of approximately 9&6eg. The embodied agent
successfully learns to manipulate 2 "arms," extegdéiom either side of its torso
connected via ball and socket joints with 3 degaddseedom, to produce intelligent and
effective locomotive behaviors. This simulatiomamstrates the effectiveness of
neuroevolution at evolving intelligent behaviorseimbodied agents employing complex
joints with up to 3 degrees of freedom. A neagdinimprovement in performance is

observed, as evidenced by figure 32.
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FIGURE 32. Fitness graph of species #4 (runner)
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Within the first 10 generations, the populationcgly improved its maximum
fitness scores by learning to manipulate its joartd appendages by applying varying
forces to the effectors. After the initial fitnegsin, the population's fitness increased
almost linearly as the number of generations pas$éeé agents quickly learned to use
both arms by simultaneously swinging them forwatd¢cing them on the ground and
thrusting them back to produce forward motion. Wéach passing generation, the
gradual improvement in locomotive abilities was adtnunnoticeable; however, the
distance traveled with each passing generatiomased progressively. Sometime
around generation 150, the arm movements of thediat agent became more
aggressive and the torso began to lift off the gcowith each successive step the agent
made. The peak fitness of 95.64 was obtainedrierg¢ion 284, with the 85percentile
occurring during generation 200.

The results for this simulation once again denratsithe ability of
neuroevolution to evolve robust and intelligentusioins to a given problem. We have
demonstrated the ability of neuroevolution to gateesolutions in a reasonable amount
of time for complex morphologies involving appendagonnected via ball and socket
joints, very much how human arms or legs are attdciThe results further demonstrate
the ability of neuroevolution to deal with largedazomplex neural networks involving

close to 1,000 inter-neuron connections.

Concluding Remarks

The goal of this thesis is to develop and dematesta framework for evolving
intelligent behaviors in embodied agents. Theuailrenvironment is modeled after the

natural environment to provide for evolved soluidhat can be transferred to physical
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manifestations of the embodied agents. Resuliseoéxperiments show that the
evolution of intelligent behaviors in a virtual @ronment constrained by the rules of
physics is feasible. Agents display the abilityegarn via a reinforcement style of
learning. Agents also learn to coordinate and tine& movements to generate effective
locomotive behaviors, and in doing so, they are &blearn to adapt to their
environment. Furthermore, they are able to evtilese effective methods of locomotion
without any external agent directing the proceshemeed for training data. Although
the simulations make use of four predetermined agenphologies, the agents
demonstrate robustness and the ability to makeekeuse of their morphology to evolve
locomotive behaviors.

TABLE 4. Summary of Fitness Results

Max | 85th Percentile | Generation |Difficulty
Crawler 30.7¢ 26.17 72 0.24
Long Arms | 190.3 161.76 2211 0.74
Hopper 119.8¢ 101.90 276 0.92
Runner 95.64 81.29 200 0.67

The NE algorithm is not optimized for any parteumorphology; however,
certain morphologies lend themselves to simplesroative solutions as is demonstrated
in table 3. The most surprising results were olgaiwith the Hopper morphology,
which turned out to be the most difficult morphaotdg evolve an intelligent locomotive
solution for. In comparison, the simplest morplggicthe Crawler, only required only
about 24% of the simulation time to evolve an ilgeht behavior. The Runner,
employing a more complex neural network than thepéo, with over 976 genes, still
requires less computational time to evolve an ligesht behavior than the less complex

Hopper agent.
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The Hopper, with its 660 genes required 92% ofiheulation time to evolve a
locomotive behavior that can only be called "adéglaln reality, the Hopper had not
yet reached its full fithess potential within th@03generations provided for in our initial
simulations. Even after extending the simulatiam out to 1,500 generations, the
Hopper morphology appears to still be evolvingis likely the difficulty the NE process
is having with the Hopper morphology is due to téstrictive means of locomotion that
the morphology dictates. The Hopper can only mowgimping (or hopping) from one
location to the next; jumping requires planningyitig, and knowledge of the
environment. Furthermore, the type of jumping permied by the hopper (performing
360 degree summersaults in midair), requires poatiaming to perfect the landings to
allow multiple jumps to be strung together. Tlyisd of intelligent behavior involves
precision control over the effector outputs ancgdwanced knowledge of the inner
workings of the environment that takes time to egolThis is likely the reason the
population of Hoppers is still evolving after 1,5¢énerations.

The results demonstrate that the complexity ofggr@ome may not be as an
important factor as the constraints imposed bymbephology of an embodied agent.
Agents that evolve locomotive behaviors requirimignate knowledge of the
environment, such as being able to predict how nioide is required to jump a distance
based upon gravitational pull, require increaseduts of computational time to evolve
an intelligent locomotive behavior. These ageststhe additional time to evolve
models of their environment that may include proieenotion, friction, and rotational

and rigid body dynamics.
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Furthermore, the agents evolve the ability to made of these models by learning how
to control their physical structures by the apglaraof forces via their effectors.
Additionally, the results show that neuroevolutioay possibly be a viable
solution to evolving complex control solutions farysical machines. Future
developments should take into consideration nevaackments in neural network
technologies and neuroevolution techniques whitt@same time exploring the
possibility of evolving ever more complex behavisugh as path following and

competition amongst the agents.
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CHAPTER 5
FUTURE DEVELOPMENTS
This chapter describes the future vision of thesth. As explained earlier, the
long-term goal of this study is to evolve intellijdehaviors that can be implanted into
machines and robots that inhabit the natural woflde following is a list of
recommendations for future enhancements to theogempsystem.

Embodied Agents

Morphology dictates how successful the embodieatagél be at completing its
task. If the goal is to embed intelligence in ahiae that exists in the natural world, the
embodied agent morphology should model that opthesical machine. With an
accurately modeled machine, the embodied agentl$ stivuld be transferable to the
machine existing in the natural world. In thistsmt, we first examine how different
morphologies allow for interaction with the envirent and what type of processing is
required to handle the vast quantity of incomingssey data.

Morphologies

An embodied agent with a complex morphology geihehals more opportunity
to interact with the environment in ways previoushexplored. An example would be
an agent with a complex articulated "arm-like" stane that modeled a human "arm™ and
"hand."” The agent with such a structure could ribigeally perform many of the same

coordinated movements and tasks that a human dooNekver, the feedback from all the
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sensors within the articulated "arm-like" structurauld likely require an ANN with an
extremely large number of neurons to process thetidata. Such an ANN would
require copious amount of time to compute the marnn the next time step.
Furthermore, training such a monstrosity could &et to impossible due to the extreme
size of the fitness landscape.

Currently, a compromise must be maintained. A rholggy that is too complex
will result in an unusable system due to the vastlmer of feedbacks into the ANN.
Biological entities make use of their complex marolgies to develop and demonstrate
intelligent behaviors. Learning about how neuraresorganized and their interaction in
biological entities can lead to a better understandf behavior. The brain of a
biological entity may only concern itself with tigeneral control of its body rather than
having to process each and every sensory inputexa&mple of this is the movement in
the body of a chicken after its head has been edverhe body will often continue to
run about for several minutes after the brain agmblhhave been completely removed
from the body. Some form of control system mugitls¢ interacting with the body that
does not rely upon the brain for control of certaotor movements. By modeling such a
control system in the embodied agents, it may &sipte to relieve the ANN from
handling the multitudes of inputs present with enptex morphology and thus reduce the
overall fitness landscape of the system.

Another area the future developer may considsiniple morphologies. Most
robotic vehicles of the natural world utilize a vehed platform. Simplifying the
embodied agents by removing the complex articulpgtied structures currently used for
locomotion and replacing them with a wheeled platfeshould allow the ANN to devote
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more of its resources to developing intelligentdabrs. A simple 4-wheeled platform
would require a minimum of inputs and outputs tatoal locomotion and the rest of the
inputs can be devoted to sensors that can pronelNN with additional environmental
data. The 4-wheeled platform would likely requatemost 2 inputs: (1) current linear
velocity and (2) current front wheel angles. Ongat should suffice for powering the
rear wheels in either a forward or reverse directidhis type of morphology can be
modified to model a variety of different wheelediates.

Artificial Neural Network

Currently, the recurrent Artificial Neural Netwoukilizes evolvable weights;
thus, the actual structure of the ANN is fixed. @&rolvable ANN structure may provide
some benefits such as quicker convergence upolutosp or more efficient ANNs that
complexify as necessary to provide the optimaltsmhg. Neuroevolutionary algorithms
that begin with a minimal network and complexife thtructure as needed may also
obviate the current trial and error method of dateing the correct number of hidden
and context layers to start the simulation witrenKeth Stanley's NEAT (2002)
algorithm may be of use to the future developehis regard.

Further consideration of different Neural Netwankdels may provide a more
biologically plausible model of the brain. Neukgtworks are simulations of biological
brains, with the main idea being that by simulatimg various aspects of a biological
brain, replication of some aspects of the braiqmbdities (decision making, pattern

recognition, etc.) should occur.
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The current recurrent neural model employed usesidtion of clock timing (similar to
that of a digital computer) that specify moments/hich inter-neuron transmissions can
occur and it further assumes the amplitude of itneas sent by a neuron is constant over
the full period between clock timings.

The approach taken by traditional neural model®ry different from how an
actual human brain works. The human brain's neusend out signals in brief "spikes, "
lasting approximately one millisecond and reachisgeak amplitude for only a very
brief moment. Spiking Neural Networks (SNNs) aeeiral network simulations that
attempt to use the more accurate "spiking" modeleniral output signals. The
implementation of a SNN is more biologically pldasiand may allow for further novel
behaviors to emerge.

Environmental Issues

The environment in which the evolution occurs ig@xely important to the final
results. The virtual environment places the saomsitaints on the embodied agents as
the natural environment would if the embodied agevere realized in physical form. It
is likely any physical realization of the embodagknts would encounter "obstacles"” in
the natural environment; thus, in order to allo& émbodied agents to learn to cope with
obstacles, they should be modeled within the vita&ironment.

A complex environment with obstacles that the endxbdgents will require
knowledge of how to avoid (or make use of) may mtevor robust evolved behaviors.
The future developer may consider embedding olestargithin the virtual environment
to elicit new behaviorisms. A further consideratimay be to allow the embodied agents
to interact or compete with each other.
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One example would be a maze like series of wallsethbodied agents would have to
navigate through.

Fitness Function

The fitness function directly determines how anmagdll be rewarded based
upon its performance within the virtual environmeBly modifying the fitness functions,
a variety of behaviors may evolve. One such maodiion a future developer may
consider is to allow for a dynamic fitness functtbat evolves the embodied agents in a
series of steps, thé'bf which may be to evolve locomotive behaviordteAthe
population of agents has evolved sufficient locawebehaviors, the dynamic fitness
function can be changed to evolve for a new behatioh as path following in the hopes
the agents will not forget how to move. In a shgpstep fashion, it may be conceivable
for the future developer to evolve complex behasios in small developmental steps.

Parallel Implementations

As described earlier, the evolutionary algorithmesiaherently parallel processes;
thus, the notion of a parallel implementation is tiext logical step. Learningin a
parallel-distributed environment reduces the comfporhal load on one computer and
enhances the overall performance. However, theraamcations necessary for the
proper functioning of the evolutionary algorithnrssmore effective on one computer.

The majority of the processing time is spent penfiog physics computations on
the eighty individual agents. Any parallel implartegion of this system that hopes to
afford a speed-up would have to consider the pbyasigine. The newer CPUs from
AMD and Intel include SIMD instructions that thddte developer may wish to optimize
the physics engine for. In certain situationszitig the SIMD unit rather than the
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floating-point unit of the CPU will allow for 4 flting-point calculations per clock cycle

and may result in an enormous speed advantage.
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FIGURE 33. Set of evolved move sequences for taeler morphology
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FIGURE 34. Set of evolved move sequences for thg &sm morphology
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FIGURE 35. Set of evolved move sequences for hopaephology
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FIGURE 36. Set of evolved move sequences for theeumorphology
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